Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/skimage/io/tests/test_pil.py

298 lines
8.6 KiB
Python
Raw Normal View History

import os
import numpy as np
from io import BytesIO
from tempfile import NamedTemporaryFile
from ... import img_as_float
from .. import imread, imsave, use_plugin, reset_plugins
from PIL import Image
from .._plugins.pil_plugin import (
pil_to_ndarray, ndarray_to_pil, _palette_is_grayscale)
from ...color import rgb2lab
from skimage._shared import testing
from skimage._shared.testing import (mono_check, color_check,
assert_equal, assert_array_equal,
assert_array_almost_equal,
assert_allclose, fetch)
from skimage._shared._warnings import expected_warnings
from skimage._shared._tempfile import temporary_file
from skimage.metrics import structural_similarity
def setup():
use_plugin('pil')
def teardown():
reset_plugins()
def setup_module(self):
"""The effect of the `plugin.use` call may be overridden by later imports.
Call `use_plugin` directly before the tests to ensure that PIL is used.
"""
try:
use_plugin('pil')
except ImportError:
pass
def test_png_round_trip():
f = NamedTemporaryFile(suffix='.png')
fname = f.name
f.close()
I = np.eye(3)
imsave(fname, I)
Ip = img_as_float(imread(fname))
os.remove(fname)
assert np.sum(np.abs(Ip-I)) < 1e-3
def test_imread_as_gray():
img = imread(fetch('data/color.png'), as_gray=True)
assert img.ndim == 2
assert img.dtype == np.float64
img = imread(fetch('data/camera.png'), as_gray=True)
# check that conversion does not happen for a gray image
assert np.sctype2char(img.dtype) in np.typecodes['AllInteger']
def test_imread_separate_channels():
# Test that imread returns RGBA values contiguously even when they are
# stored in separate planes.
x = np.random.rand(3, 16, 8)
f = NamedTemporaryFile(suffix='.tif')
fname = f.name
f.close()
imsave(fname, x)
img = imread(fname)
os.remove(fname)
assert img.shape == (16, 8, 3), img.shape
def test_imread_multipage_rgb_tif():
img = imread(fetch('data/multipage_rgb.tif'))
assert img.shape == (2, 10, 10, 3), img.shape
def test_imread_palette():
img = imread(fetch('data/palette_gray.png'))
assert img.ndim == 2
img = imread(fetch('data/palette_color.png'))
assert img.ndim == 3
def test_imread_index_png_with_alpha():
# The file `foo3x5x4indexed.png` was created with this array
# (3x5 is (height)x(width)):
dfoo = np.array([[[127, 0, 255, 255],
[127, 0, 255, 255],
[127, 0, 255, 255],
[127, 0, 255, 255],
[127, 0, 255, 255]],
[[192, 192, 255, 0],
[192, 192, 255, 0],
[0, 0, 255, 0],
[0, 0, 255, 0],
[0, 0, 255, 0]],
[[0, 31, 255, 255],
[0, 31, 255, 255],
[0, 31, 255, 255],
[0, 31, 255, 255],
[0, 31, 255, 255]]], dtype=np.uint8)
img = imread(fetch('data/foo3x5x4indexed.png'))
assert_array_equal(img, dfoo)
def test_palette_is_gray():
gray = Image.open(fetch('data/palette_gray.png'))
assert _palette_is_grayscale(gray)
color = Image.open(fetch('data/palette_color.png'))
assert not _palette_is_grayscale(color)
def test_bilevel():
expected = np.zeros((10, 10))
expected[::2] = 255
img = imread(fetch('data/checker_bilevel.png'))
assert_array_equal(img, expected)
def test_imread_uint16():
expected = np.load(fetch('data/chessboard_GRAY_U8.npy'))
img = imread(fetch('data/chessboard_GRAY_U16.tif'))
assert np.issubdtype(img.dtype, np.uint16)
assert_array_almost_equal(img, expected)
def test_imread_truncated_jpg():
with testing.raises(IOError):
imread(fetch('data/truncated.jpg'))
def test_jpg_quality_arg():
chessboard = np.load(fetch('data/chessboard_GRAY_U8.npy'))
with temporary_file(suffix='.jpg') as jpg:
imsave(jpg, chessboard, quality=95)
im = imread(jpg)
sim = structural_similarity(
chessboard, im,
data_range=chessboard.max() - chessboard.min())
assert sim > 0.99
def test_imread_uint16_big_endian():
expected = np.load(fetch('data/chessboard_GRAY_U8.npy'))
img = imread(fetch('data/chessboard_GRAY_U16B.tif'))
assert img.dtype == np.uint16
assert_array_almost_equal(img, expected)
class TestSave:
def roundtrip_file(self, x):
with temporary_file(suffix='.png') as fname:
imsave(fname, x)
y = imread(fname)
return y
def roundtrip_pil_image(self, x):
pil_image = ndarray_to_pil(x)
y = pil_to_ndarray(pil_image)
return y
def verify_roundtrip(self, dtype, x, y, scaling=1):
assert_array_almost_equal((x * scaling).astype(np.int32), y)
def verify_imsave_roundtrip(self, roundtrip_function):
for shape in [(10, 10), (10, 10, 3), (10, 10, 4)]:
for dtype in (np.uint8, np.uint16, np.float32, np.float64):
x = np.ones(shape, dtype=dtype) * np.random.rand(*shape)
if np.issubdtype(dtype, np.floating):
yield (self.verify_roundtrip, dtype, x,
roundtrip_function(x), 255)
else:
x = (x * 255).astype(dtype)
yield (self.verify_roundtrip, dtype, x,
roundtrip_function(x))
def test_imsave_roundtrip_file(self):
self.verify_imsave_roundtrip(self.roundtrip_file)
def test_imsave_roundtrip_pil_image(self):
self.verify_imsave_roundtrip(self.roundtrip_pil_image)
def test_imsave_incorrect_dimension():
with temporary_file(suffix='.png') as fname:
with testing.raises(ValueError):
with expected_warnings([fname + ' is a low contrast image']):
imsave(fname, np.zeros((2, 3, 3, 1)))
with testing.raises(ValueError):
with expected_warnings([fname + ' is a low contrast image']):
imsave(fname, np.zeros((2, 3, 2)))
# test that low contrast check is ignored
with testing.raises(ValueError):
with expected_warnings([]):
imsave(fname, np.zeros((2, 3, 2)), check_contrast=False)
def test_imsave_filelike():
shape = (2, 2)
image = np.zeros(shape)
s = BytesIO()
# save to file-like object
with expected_warnings(['is a low contrast image']):
imsave(s, image)
# read from file-like object
s.seek(0)
out = imread(s)
assert_equal(out.shape, shape)
assert_allclose(out, image)
def test_imsave_boolean_input():
shape = (2, 2)
image = np.eye(*shape, dtype=np.bool)
s = BytesIO()
# save to file-like object
with expected_warnings(
['is a boolean image: setting True to 255 and False to 0']):
imsave(s, image)
# read from file-like object
s.seek(0)
out = imread(s)
assert_equal(out.shape, shape)
assert_allclose(out.astype(bool), image)
def test_imexport_imimport():
shape = (2, 2)
image = np.zeros(shape)
pil_image = ndarray_to_pil(image)
out = pil_to_ndarray(pil_image)
assert_equal(out.shape, shape)
def test_all_color():
with expected_warnings(['.* is a boolean image']):
color_check('pil')
with expected_warnings(['.* is a boolean image']):
color_check('pil', 'bmp')
def test_all_mono():
with expected_warnings(['.* is a boolean image']):
mono_check('pil')
def test_multi_page_gif():
img = imread(fetch('data/no_time_for_that_tiny.gif'))
assert img.shape == (24, 25, 14, 3), img.shape
img2 = imread(fetch('data/no_time_for_that_tiny.gif'),
img_num=5)
assert img2.shape == (25, 14, 3)
assert_allclose(img[5], img2)
def test_cmyk():
ref = imread(fetch('data/color.png'))
img = Image.open(fetch('data/color.png'))
img = img.convert('CMYK')
f = NamedTemporaryFile(suffix='.jpg')
fname = f.name
f.close()
img.save(fname)
try:
img.close()
except AttributeError: # `close` not available on PIL
pass
new = imread(fname)
ref_lab = rgb2lab(ref)
new_lab = rgb2lab(new)
for i in range(3):
newi = np.ascontiguousarray(new_lab[:, :, i])
refi = np.ascontiguousarray(ref_lab[:, :, i])
sim = structural_similarity(refi, newi,
data_range=refi.max() - refi.min())
assert sim > 0.99
def test_extreme_palette():
img = imread(fetch('data/green_palette.png'))
assert_equal(img.ndim, 3)