268 lines
8 KiB
Python
268 lines
8 KiB
Python
|
__all__ = ['imread', 'imsave']
|
||
|
|
||
|
from distutils.version import LooseVersion
|
||
|
import warnings
|
||
|
import numpy as np
|
||
|
from PIL import Image, __version__ as pil_version
|
||
|
|
||
|
from ...util import img_as_ubyte, img_as_uint
|
||
|
|
||
|
|
||
|
def imread(fname, dtype=None, img_num=None, **kwargs):
|
||
|
"""Load an image from file.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
fname : str or file
|
||
|
File name or file-like-object.
|
||
|
dtype : numpy dtype object or string specifier
|
||
|
Specifies data type of array elements.
|
||
|
img_num : int, optional
|
||
|
Specifies which image to read in a file with multiple images
|
||
|
(zero-indexed).
|
||
|
kwargs : keyword pairs, optional
|
||
|
Addition keyword arguments to pass through.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Files are read using the Python Imaging Library.
|
||
|
See PIL docs [1]_ for a list of supported formats.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] http://pillow.readthedocs.org/en/latest/handbook/image-file-formats.html
|
||
|
"""
|
||
|
if isinstance(fname, str):
|
||
|
with open(fname, 'rb') as f:
|
||
|
im = Image.open(f)
|
||
|
return pil_to_ndarray(im, dtype=dtype, img_num=img_num)
|
||
|
else:
|
||
|
im = Image.open(fname)
|
||
|
if im.format == 'MPO' and LooseVersion(pil_version) < '6.0.0':
|
||
|
warnings.warn("You are trying to read a MPO image. "
|
||
|
"To ensure a good support of this format, "
|
||
|
"please upgrade pillow to 6.0.0 version or later.",
|
||
|
stacklevel=2)
|
||
|
return pil_to_ndarray(im, dtype=dtype, img_num=img_num)
|
||
|
|
||
|
|
||
|
def pil_to_ndarray(image, dtype=None, img_num=None):
|
||
|
"""Import a PIL Image object to an ndarray, in memory.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
Refer to ``imread``.
|
||
|
|
||
|
"""
|
||
|
try:
|
||
|
# this will raise an IOError if the file is not readable
|
||
|
image.getdata()[0]
|
||
|
except IOError as e:
|
||
|
site = "http://pillow.readthedocs.org/en/latest/installation.html#external-libraries"
|
||
|
pillow_error_message = str(e)
|
||
|
error_message = ('Could not load "%s" \n'
|
||
|
'Reason: "%s"\n'
|
||
|
'Please see documentation at: %s'
|
||
|
% (image.filename, pillow_error_message, site))
|
||
|
raise ValueError(error_message)
|
||
|
frames = []
|
||
|
grayscale = None
|
||
|
i = 0
|
||
|
while 1:
|
||
|
try:
|
||
|
image.seek(i)
|
||
|
except EOFError:
|
||
|
break
|
||
|
|
||
|
frame = image
|
||
|
|
||
|
if img_num is not None and img_num != i:
|
||
|
image.getdata()[0]
|
||
|
i += 1
|
||
|
continue
|
||
|
|
||
|
if image.format == 'PNG' and image.mode == 'I' and dtype is None:
|
||
|
dtype = 'uint16'
|
||
|
|
||
|
if image.mode == 'P':
|
||
|
if grayscale is None:
|
||
|
grayscale = _palette_is_grayscale(image)
|
||
|
|
||
|
if grayscale:
|
||
|
frame = image.convert('L')
|
||
|
else:
|
||
|
if image.format == 'PNG' and 'transparency' in image.info:
|
||
|
frame = image.convert('RGBA')
|
||
|
else:
|
||
|
frame = image.convert('RGB')
|
||
|
|
||
|
elif image.mode == '1':
|
||
|
frame = image.convert('L')
|
||
|
|
||
|
elif 'A' in image.mode:
|
||
|
frame = image.convert('RGBA')
|
||
|
|
||
|
elif image.mode == 'CMYK':
|
||
|
frame = image.convert('RGB')
|
||
|
|
||
|
if image.mode.startswith('I;16'):
|
||
|
shape = image.size
|
||
|
dtype = '>u2' if image.mode.endswith('B') else '<u2'
|
||
|
if 'S' in image.mode:
|
||
|
dtype = dtype.replace('u', 'i')
|
||
|
frame = np.fromstring(frame.tobytes(), dtype)
|
||
|
frame.shape = shape[::-1]
|
||
|
|
||
|
else:
|
||
|
frame = np.array(frame, dtype=dtype)
|
||
|
|
||
|
frames.append(frame)
|
||
|
i += 1
|
||
|
|
||
|
if img_num is not None:
|
||
|
break
|
||
|
|
||
|
if hasattr(image, 'fp') and image.fp:
|
||
|
image.fp.close()
|
||
|
|
||
|
if img_num is None and len(frames) > 1:
|
||
|
return np.array(frames)
|
||
|
elif frames:
|
||
|
return frames[0]
|
||
|
elif img_num:
|
||
|
raise IndexError('Could not find image #%s' % img_num)
|
||
|
|
||
|
|
||
|
def _palette_is_grayscale(pil_image):
|
||
|
"""Return True if PIL image in palette mode is grayscale.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
pil_image : PIL image
|
||
|
PIL Image that is in Palette mode.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
is_grayscale : bool
|
||
|
True if all colors in image palette are gray.
|
||
|
"""
|
||
|
if pil_image.mode != 'P':
|
||
|
raise ValueError('pil_image.mode must be equal to "P".')
|
||
|
# get palette as an array with R, G, B columns
|
||
|
palette = np.asarray(pil_image.getpalette()).reshape((256, 3))
|
||
|
# Not all palette colors are used; unused colors have junk values.
|
||
|
start, stop = pil_image.getextrema()
|
||
|
valid_palette = palette[start:stop + 1]
|
||
|
# Image is grayscale if channel differences (R - G and G - B)
|
||
|
# are all zero.
|
||
|
return np.allclose(np.diff(valid_palette), 0)
|
||
|
|
||
|
|
||
|
def ndarray_to_pil(arr, format_str=None):
|
||
|
"""Export an ndarray to a PIL object.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
Refer to ``imsave``.
|
||
|
|
||
|
"""
|
||
|
if arr.ndim == 3:
|
||
|
arr = img_as_ubyte(arr)
|
||
|
mode = {3: 'RGB', 4: 'RGBA'}[arr.shape[2]]
|
||
|
|
||
|
elif format_str in ['png', 'PNG']:
|
||
|
mode = 'I;16'
|
||
|
mode_base = 'I'
|
||
|
|
||
|
if arr.dtype.kind == 'f':
|
||
|
arr = img_as_uint(arr)
|
||
|
|
||
|
elif arr.max() < 256 and arr.min() >= 0:
|
||
|
arr = arr.astype(np.uint8)
|
||
|
mode = mode_base = 'L'
|
||
|
|
||
|
else:
|
||
|
arr = img_as_uint(arr)
|
||
|
|
||
|
else:
|
||
|
arr = img_as_ubyte(arr)
|
||
|
mode = 'L'
|
||
|
mode_base = 'L'
|
||
|
|
||
|
try:
|
||
|
array_buffer = arr.tobytes()
|
||
|
except AttributeError:
|
||
|
array_buffer = arr.tostring() # Numpy < 1.9
|
||
|
|
||
|
if arr.ndim == 2:
|
||
|
im = Image.new(mode_base, arr.T.shape)
|
||
|
try:
|
||
|
im.frombytes(array_buffer, 'raw', mode)
|
||
|
except AttributeError:
|
||
|
im.fromstring(array_buffer, 'raw', mode) # PIL 1.1.7
|
||
|
else:
|
||
|
image_shape = (arr.shape[1], arr.shape[0])
|
||
|
try:
|
||
|
im = Image.frombytes(mode, image_shape, array_buffer)
|
||
|
except AttributeError:
|
||
|
im = Image.fromstring(mode, image_shape, array_buffer) # PIL 1.1.7
|
||
|
return im
|
||
|
|
||
|
|
||
|
def imsave(fname, arr, format_str=None, **kwargs):
|
||
|
"""Save an image to disk.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
fname : str or file-like object
|
||
|
Name of destination file.
|
||
|
arr : ndarray of uint8 or float
|
||
|
Array (image) to save. Arrays of data-type uint8 should have
|
||
|
values in [0, 255], whereas floating-point arrays must be
|
||
|
in [0, 1].
|
||
|
format_str: str
|
||
|
Format to save as, this is defaulted to PNG if using a file-like
|
||
|
object; this will be derived from the extension if fname is a string
|
||
|
kwargs: dict
|
||
|
Keyword arguments to the Pillow save function (or tifffile save
|
||
|
function, for Tiff files). These are format dependent. For example,
|
||
|
Pillow's JPEG save function supports an integer ``quality`` argument
|
||
|
with values in [1, 95], while TIFFFile supports a ``compress``
|
||
|
integer argument with values in [0, 9].
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Use the Python Imaging Library.
|
||
|
See PIL docs [1]_ for a list of other supported formats.
|
||
|
All images besides single channel PNGs are converted using `img_as_uint8`.
|
||
|
Single Channel PNGs have the following behavior:
|
||
|
- Integer values in [0, 255] and Boolean types -> img_as_uint8
|
||
|
- Floating point and other integers -> img_as_uint16
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] http://pillow.readthedocs.org/en/latest/handbook/image-file-formats.html
|
||
|
"""
|
||
|
# default to PNG if file-like object
|
||
|
if not isinstance(fname, str) and format_str is None:
|
||
|
format_str = "PNG"
|
||
|
# Check for png in filename
|
||
|
if (isinstance(fname, str)
|
||
|
and fname.lower().endswith(".png")):
|
||
|
format_str = "PNG"
|
||
|
|
||
|
arr = np.asanyarray(arr)
|
||
|
|
||
|
if arr.dtype.kind == 'b':
|
||
|
arr = arr.astype(np.uint8)
|
||
|
|
||
|
if arr.ndim not in (2, 3):
|
||
|
raise ValueError("Invalid shape for image array: %s" % (arr.shape, ))
|
||
|
|
||
|
if arr.ndim == 3:
|
||
|
if arr.shape[2] not in (3, 4):
|
||
|
raise ValueError("Invalid number of channels in image array.")
|
||
|
|
||
|
img = ndarray_to_pil(arr, format_str=format_str)
|
||
|
img.save(fname, format=format_str, **kwargs)
|