2020-10-29 03:56:14 +00:00
|
|
|
import sys
|
|
|
|
import os
|
|
|
|
|
|
|
|
import cv2
|
2020-10-14 14:10:37 +00:00
|
|
|
import numpy as np
|
2020-10-03 01:26:03 +00:00
|
|
|
|
2020-10-12 20:59:52 +00:00
|
|
|
from glob import glob
|
2020-10-12 20:15:18 +00:00
|
|
|
from skimage import io
|
2020-10-03 01:26:03 +00:00
|
|
|
|
|
|
|
|
2020-10-29 03:56:14 +00:00
|
|
|
def face_detector_haarcascade(image):
|
|
|
|
|
|
|
|
grey = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
|
|
|
|
|
|
|
resize_fx = 1
|
|
|
|
resize_fy = 1
|
|
|
|
grey = cv2.resize(grey, dsize=None, fx=resize_fx, fy=resize_fy, interpolation = cv2.INTER_AREA)
|
|
|
|
|
|
|
|
pwd = sys.path[0]
|
|
|
|
classfier = cv2.CascadeClassifier(pwd + "/Facial_models/haarcascade_frontalface_alt2.xml")
|
|
|
|
|
|
|
|
faceRects = classfier.detectMultiScale(grey, scaleFactor=1.2, minNeighbors=1, minSize=(16, 16))
|
|
|
|
|
|
|
|
if len(faceRects) > 0:
|
|
|
|
for faceRect in faceRects:
|
|
|
|
x, y, w, h = faceRect
|
|
|
|
x = int(x/resize_fx)
|
|
|
|
y = int(y/resize_fy)
|
|
|
|
w = int(w/resize_fx)
|
|
|
|
h = int(h/resize_fy)
|
|
|
|
cv2.rectangle(image, (x - 10, y - 10), (x + w + 10, y + h + 10), (0, 255, 0), 5)
|
|
|
|
|
|
|
|
return image
|
|
|
|
|
|
|
|
|
|
|
|
def face_detector_ssd(image):
|
|
|
|
|
|
|
|
pwd = sys.path[0]
|
|
|
|
net = cv2.dnn.readNetFromCaffe(pwd+"/Facial_models/deploy.prototxt", pwd+"/Facial_models/res10_300x300_ssd_iter_140000_fp16.caffemodel")
|
|
|
|
|
|
|
|
resize = (800, 800)
|
|
|
|
confidence_thres = 0.65
|
|
|
|
|
|
|
|
blob = cv2.dnn.blobFromImage(cv2.resize(image, dsize=resize), 1.0, resize, (104.0, 177.0, 123.0))
|
|
|
|
# blob = cv2.dnn.blobFromImage(cv2.resize(image, (300, 300)), 1.0, (300, 300), (104.0, 177.0, 123.0))
|
2020-10-03 01:26:03 +00:00
|
|
|
|
2020-10-29 03:56:14 +00:00
|
|
|
net.setInput(blob)
|
2020-10-28 22:54:02 +00:00
|
|
|
|
2020-10-29 03:56:14 +00:00
|
|
|
detections = net.forward()
|
2020-10-28 22:54:02 +00:00
|
|
|
|
2020-10-29 03:56:14 +00:00
|
|
|
h,w,c=image.shape
|
2020-10-28 22:54:02 +00:00
|
|
|
|
2020-10-29 03:56:14 +00:00
|
|
|
for i in range(0, detections.shape[2]):
|
|
|
|
confidence = detections[0, 0, i, 2]
|
|
|
|
if confidence > confidence_thres:
|
|
|
|
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
|
|
|
|
(startX, startY, endX, endY) = box.astype("int")
|
|
|
|
text = "{:.2f}%".format(confidence * 100)
|
|
|
|
y = startY - 10 if startY - 10 > 10 else startY + 10
|
|
|
|
cv2.rectangle(image, (startX, startY), (endX, endY),(0, 255,0), 5)
|
|
|
|
cv2.putText(image, text, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 1.00, (0, 255, 0), 3)
|
|
|
|
|
|
|
|
return image
|
2020-10-03 01:26:03 +00:00
|
|
|
|
|
|
|
|
2020-10-28 22:54:02 +00:00
|
|
|
|
2020-10-29 03:56:14 +00:00
|
|
|
if __name__=="__main__":
|
2020-10-28 22:54:02 +00:00
|
|
|
|
2020-10-29 03:56:14 +00:00
|
|
|
image_name = "8.jpg"
|
|
|
|
split_name = image_name.split(".")
|
2020-10-28 22:54:02 +00:00
|
|
|
|
2020-10-29 03:56:14 +00:00
|
|
|
image_read_path = sys.path[0]+"/Facial_test_images/"+image_name
|
|
|
|
image_save_path = sys.path[0]+"/Facial_test_images/output/"+split_name[0]+"_result."+split_name[1]
|
2020-10-28 22:54:02 +00:00
|
|
|
|
2020-10-29 03:56:14 +00:00
|
|
|
image = cv2.imread(image_read_path)
|
2020-10-28 22:54:02 +00:00
|
|
|
|
2020-10-29 03:56:14 +00:00
|
|
|
image = face_detector_ssd(image)
|
|
|
|
#image = face_detector_haarcascade(image)
|
2020-10-28 22:54:02 +00:00
|
|
|
|
2020-10-29 03:56:14 +00:00
|
|
|
print(image_save_path)
|
2020-10-28 22:54:02 +00:00
|
|
|
|
2020-10-29 03:56:14 +00:00
|
|
|
cv2.imwrite(image_save_path, image)
|
|
|
|
cv2.imshow("result", image)
|
|
|
|
cv2.waitKey()
|
|
|
|
cv2.destroyAllWindows()
|
2020-10-28 22:54:02 +00:00
|
|
|
|
2020-10-29 03:56:14 +00:00
|
|
|
|
2020-10-28 22:54:02 +00:00
|
|
|
|
2020-10-03 01:26:03 +00:00
|
|
|
|