Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/scipy/_lib/_util.py

483 lines
16 KiB
Python
Raw Normal View History

import functools
import operator
import sys
import warnings
import numbers
from collections import namedtuple
from multiprocessing import Pool
import inspect
import numpy as np
try:
from numpy.random import Generator as Generator
except ImportError:
class Generator(): # type: ignore[no-redef]
pass
def _valarray(shape, value=np.nan, typecode=None):
"""Return an array of all values.
"""
out = np.ones(shape, dtype=bool) * value
if typecode is not None:
out = out.astype(typecode)
if not isinstance(out, np.ndarray):
out = np.asarray(out)
return out
def _lazywhere(cond, arrays, f, fillvalue=None, f2=None):
"""
np.where(cond, x, fillvalue) always evaluates x even where cond is False.
This one only evaluates f(arr1[cond], arr2[cond], ...).
For example,
>>> a, b = np.array([1, 2, 3, 4]), np.array([5, 6, 7, 8])
>>> def f(a, b):
return a*b
>>> _lazywhere(a > 2, (a, b), f, np.nan)
array([ nan, nan, 21., 32.])
Notice, it assumes that all `arrays` are of the same shape, or can be
broadcasted together.
"""
if fillvalue is None:
if f2 is None:
raise ValueError("One of (fillvalue, f2) must be given.")
else:
fillvalue = np.nan
else:
if f2 is not None:
raise ValueError("Only one of (fillvalue, f2) can be given.")
arrays = np.broadcast_arrays(*arrays)
temp = tuple(np.extract(cond, arr) for arr in arrays)
tcode = np.mintypecode([a.dtype.char for a in arrays])
out = _valarray(np.shape(arrays[0]), value=fillvalue, typecode=tcode)
np.place(out, cond, f(*temp))
if f2 is not None:
temp = tuple(np.extract(~cond, arr) for arr in arrays)
np.place(out, ~cond, f2(*temp))
return out
def _lazyselect(condlist, choicelist, arrays, default=0):
"""
Mimic `np.select(condlist, choicelist)`.
Notice, it assumes that all `arrays` are of the same shape or can be
broadcasted together.
All functions in `choicelist` must accept array arguments in the order
given in `arrays` and must return an array of the same shape as broadcasted
`arrays`.
Examples
--------
>>> x = np.arange(6)
>>> np.select([x <3, x > 3], [x**2, x**3], default=0)
array([ 0, 1, 4, 0, 64, 125])
>>> _lazyselect([x < 3, x > 3], [lambda x: x**2, lambda x: x**3], (x,))
array([ 0., 1., 4., 0., 64., 125.])
>>> a = -np.ones_like(x)
>>> _lazyselect([x < 3, x > 3],
... [lambda x, a: x**2, lambda x, a: a * x**3],
... (x, a), default=np.nan)
array([ 0., 1., 4., nan, -64., -125.])
"""
arrays = np.broadcast_arrays(*arrays)
tcode = np.mintypecode([a.dtype.char for a in arrays])
out = _valarray(np.shape(arrays[0]), value=default, typecode=tcode)
for index in range(len(condlist)):
func, cond = choicelist[index], condlist[index]
if np.all(cond is False):
continue
cond, _ = np.broadcast_arrays(cond, arrays[0])
temp = tuple(np.extract(cond, arr) for arr in arrays)
np.place(out, cond, func(*temp))
return out
def _aligned_zeros(shape, dtype=float, order="C", align=None):
"""Allocate a new ndarray with aligned memory.
Primary use case for this currently is working around a f2py issue
in NumPy 1.9.1, where dtype.alignment is such that np.zeros() does
not necessarily create arrays aligned up to it.
"""
dtype = np.dtype(dtype)
if align is None:
align = dtype.alignment
if not hasattr(shape, '__len__'):
shape = (shape,)
size = functools.reduce(operator.mul, shape) * dtype.itemsize
buf = np.empty(size + align + 1, np.uint8)
offset = buf.__array_interface__['data'][0] % align
if offset != 0:
offset = align - offset
# Note: slices producing 0-size arrays do not necessarily change
# data pointer --- so we use and allocate size+1
buf = buf[offset:offset+size+1][:-1]
data = np.ndarray(shape, dtype, buf, order=order)
data.fill(0)
return data
def _prune_array(array):
"""Return an array equivalent to the input array. If the input
array is a view of a much larger array, copy its contents to a
newly allocated array. Otherwise, return the input unchanged.
"""
if array.base is not None and array.size < array.base.size // 2:
return array.copy()
return array
def prod(iterable):
"""
Product of a sequence of numbers.
Faster than np.prod for short lists like array shapes, and does
not overflow if using Python integers.
"""
product = 1
for x in iterable:
product *= x
return product
class DeprecatedImport(object):
"""
Deprecated import with redirection and warning.
Examples
--------
Suppose you previously had in some module::
from foo import spam
If this has to be deprecated, do::
spam = DeprecatedImport("foo.spam", "baz")
to redirect users to use "baz" module instead.
"""
def __init__(self, old_module_name, new_module_name):
self._old_name = old_module_name
self._new_name = new_module_name
__import__(self._new_name)
self._mod = sys.modules[self._new_name]
def __dir__(self):
return dir(self._mod)
def __getattr__(self, name):
warnings.warn("Module %s is deprecated, use %s instead"
% (self._old_name, self._new_name),
DeprecationWarning)
return getattr(self._mod, name)
# copy-pasted from scikit-learn utils/validation.py
def check_random_state(seed):
"""Turn seed into a np.random.RandomState instance
If seed is None (or np.random), return the RandomState singleton used
by np.random.
If seed is an int, return a new RandomState instance seeded with seed.
If seed is already a RandomState instance, return it.
If seed is a new-style np.random.Generator, return it.
Otherwise, raise ValueError.
"""
if seed is None or seed is np.random:
return np.random.mtrand._rand
if isinstance(seed, (numbers.Integral, np.integer)):
return np.random.RandomState(seed)
if isinstance(seed, np.random.RandomState):
return seed
try:
# Generator is only available in numpy >= 1.17
if isinstance(seed, np.random.Generator):
return seed
except AttributeError:
pass
raise ValueError('%r cannot be used to seed a numpy.random.RandomState'
' instance' % seed)
def _asarray_validated(a, check_finite=True,
sparse_ok=False, objects_ok=False, mask_ok=False,
as_inexact=False):
"""
Helper function for SciPy argument validation.
Many SciPy linear algebra functions do support arbitrary array-like
input arguments. Examples of commonly unsupported inputs include
matrices containing inf/nan, sparse matrix representations, and
matrices with complicated elements.
Parameters
----------
a : array_like
The array-like input.
check_finite : bool, optional
Whether to check that the input matrices contain only finite numbers.
Disabling may give a performance gain, but may result in problems
(crashes, non-termination) if the inputs do contain infinities or NaNs.
Default: True
sparse_ok : bool, optional
True if scipy sparse matrices are allowed.
objects_ok : bool, optional
True if arrays with dype('O') are allowed.
mask_ok : bool, optional
True if masked arrays are allowed.
as_inexact : bool, optional
True to convert the input array to a np.inexact dtype.
Returns
-------
ret : ndarray
The converted validated array.
"""
if not sparse_ok:
import scipy.sparse
if scipy.sparse.issparse(a):
msg = ('Sparse matrices are not supported by this function. '
'Perhaps one of the scipy.sparse.linalg functions '
'would work instead.')
raise ValueError(msg)
if not mask_ok:
if np.ma.isMaskedArray(a):
raise ValueError('masked arrays are not supported')
toarray = np.asarray_chkfinite if check_finite else np.asarray
a = toarray(a)
if not objects_ok:
if a.dtype is np.dtype('O'):
raise ValueError('object arrays are not supported')
if as_inexact:
if not np.issubdtype(a.dtype, np.inexact):
a = toarray(a, dtype=np.float_)
return a
# Add a replacement for inspect.getfullargspec()/
# The version below is borrowed from Django,
# https://github.com/django/django/pull/4846.
# Note an inconsistency between inspect.getfullargspec(func) and
# inspect.signature(func). If `func` is a bound method, the latter does *not*
# list `self` as a first argument, while the former *does*.
# Hence, cook up a common ground replacement: `getfullargspec_no_self` which
# mimics `inspect.getfullargspec` but does not list `self`.
#
# This way, the caller code does not need to know whether it uses a legacy
# .getfullargspec or a bright and shiny .signature.
FullArgSpec = namedtuple('FullArgSpec',
['args', 'varargs', 'varkw', 'defaults',
'kwonlyargs', 'kwonlydefaults', 'annotations'])
def getfullargspec_no_self(func):
"""inspect.getfullargspec replacement using inspect.signature.
If func is a bound method, do not list the 'self' parameter.
Parameters
----------
func : callable
A callable to inspect
Returns
-------
fullargspec : FullArgSpec(args, varargs, varkw, defaults, kwonlyargs,
kwonlydefaults, annotations)
NOTE: if the first argument of `func` is self, it is *not*, I repeat
*not*, included in fullargspec.args.
This is done for consistency between inspect.getargspec() under
Python 2.x, and inspect.signature() under Python 3.x.
"""
sig = inspect.signature(func)
args = [
p.name for p in sig.parameters.values()
if p.kind in [inspect.Parameter.POSITIONAL_OR_KEYWORD,
inspect.Parameter.POSITIONAL_ONLY]
]
varargs = [
p.name for p in sig.parameters.values()
if p.kind == inspect.Parameter.VAR_POSITIONAL
]
varargs = varargs[0] if varargs else None
varkw = [
p.name for p in sig.parameters.values()
if p.kind == inspect.Parameter.VAR_KEYWORD
]
varkw = varkw[0] if varkw else None
defaults = tuple(
p.default for p in sig.parameters.values()
if (p.kind == inspect.Parameter.POSITIONAL_OR_KEYWORD and
p.default is not p.empty)
) or None
kwonlyargs = [
p.name for p in sig.parameters.values()
if p.kind == inspect.Parameter.KEYWORD_ONLY
]
kwdefaults = {p.name: p.default for p in sig.parameters.values()
if p.kind == inspect.Parameter.KEYWORD_ONLY and
p.default is not p.empty}
annotations = {p.name: p.annotation for p in sig.parameters.values()
if p.annotation is not p.empty}
return FullArgSpec(args, varargs, varkw, defaults, kwonlyargs,
kwdefaults or None, annotations)
class MapWrapper(object):
"""
Parallelisation wrapper for working with map-like callables, such as
`multiprocessing.Pool.map`.
Parameters
----------
pool : int or map-like callable
If `pool` is an integer, then it specifies the number of threads to
use for parallelization. If ``int(pool) == 1``, then no parallel
processing is used and the map builtin is used.
If ``pool == -1``, then the pool will utilize all available CPUs.
If `pool` is a map-like callable that follows the same
calling sequence as the built-in map function, then this callable is
used for parallelization.
"""
def __init__(self, pool=1):
self.pool = None
self._mapfunc = map
self._own_pool = False
if callable(pool):
self.pool = pool
self._mapfunc = self.pool
else:
# user supplies a number
if int(pool) == -1:
# use as many processors as possible
self.pool = Pool()
self._mapfunc = self.pool.map
self._own_pool = True
elif int(pool) == 1:
pass
elif int(pool) > 1:
# use the number of processors requested
self.pool = Pool(processes=int(pool))
self._mapfunc = self.pool.map
self._own_pool = True
else:
raise RuntimeError("Number of workers specified must be -1,"
" an int >= 1, or an object with a 'map' method")
def __enter__(self):
return self
def __del__(self):
self.close()
self.terminate()
def terminate(self):
if self._own_pool:
self.pool.terminate()
def join(self):
if self._own_pool:
self.pool.join()
def close(self):
if self._own_pool:
self.pool.close()
def __exit__(self, exc_type, exc_value, traceback):
if self._own_pool:
self.pool.close()
self.pool.terminate()
def __call__(self, func, iterable):
# only accept one iterable because that's all Pool.map accepts
try:
return self._mapfunc(func, iterable)
except TypeError:
# wrong number of arguments
raise TypeError("The map-like callable must be of the"
" form f(func, iterable)")
def rng_integers(gen, low, high=None, size=None, dtype='int64',
endpoint=False):
"""
Return random integers from low (inclusive) to high (exclusive), or if
endpoint=True, low (inclusive) to high (inclusive). Replaces
`RandomState.randint` (with endpoint=False) and
`RandomState.random_integers` (with endpoint=True).
Return random integers from the "discrete uniform" distribution of the
specified dtype. If high is None (the default), then results are from
0 to low.
Parameters
----------
gen: {None, np.random.RandomState, np.random.Generator}
Random number generator. If None, then the np.random.RandomState
singleton is used.
low: int or array-like of ints
Lowest (signed) integers to be drawn from the distribution (unless
high=None, in which case this parameter is 0 and this value is used
for high).
high: int or array-like of ints
If provided, one above the largest (signed) integer to be drawn from
the distribution (see above for behavior if high=None). If array-like,
must contain integer values.
size: None
Output shape. If the given shape is, e.g., (m, n, k), then m * n * k
samples are drawn. Default is None, in which case a single value is
returned.
dtype: {str, dtype}, optional
Desired dtype of the result. All dtypes are determined by their name,
i.e., 'int64', 'int', etc, so byteorder is not available and a specific
precision may have different C types depending on the platform.
The default value is np.int_.
endpoint: bool, optional
If True, sample from the interval [low, high] instead of the default
[low, high) Defaults to False.
Returns
-------
out: int or ndarray of ints
size-shaped array of random integers from the appropriate distribution,
or a single such random int if size not provided.
"""
if isinstance(gen, Generator):
return gen.integers(low, high=high, size=size, dtype=dtype,
endpoint=endpoint)
else:
if gen is None:
# default is RandomState singleton used by np.random.
gen = np.random.mtrand._rand
if endpoint:
# inclusive of endpoint
# remember that low and high can be arrays, so don't modify in
# place
if high is None:
return gen.randint(low + 1, size=size, dtype=dtype)
if high is not None:
return gen.randint(low, high=high + 1, size=size, dtype=dtype)
# exclusive
return gen.randint(low, high=high, size=size, dtype=dtype)