Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/Crypto/SelfTest/Protocol/test_KDF.py

450 lines
16 KiB
Python
Raw Normal View History

# -*- coding: utf-8 -*-
#
# SelfTest/Protocol/test_KDF.py: Self-test for key derivation functions
#
# ===================================================================
# The contents of this file are dedicated to the public domain. To
# the extent that dedication to the public domain is not available,
# everyone is granted a worldwide, perpetual, royalty-free,
# non-exclusive license to exercise all rights associated with the
# contents of this file for any purpose whatsoever.
# No rights are reserved.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ===================================================================
import unittest
from binascii import unhexlify
from Crypto.Util.py3compat import *
from Crypto.SelfTest.st_common import list_test_cases
from Crypto.Hash import SHA1, HMAC, SHA256
from Crypto.Cipher import AES, DES3
from Crypto.Protocol.KDF import PBKDF1, PBKDF2, _S2V, HKDF, scrypt
def t2b(t):
if t is None:
return None
t2 = t.replace(" ", "").replace("\n", "")
return unhexlify(b(t2))
class TestVector(object):
pass
class PBKDF1_Tests(unittest.TestCase):
# List of tuples with test data.
# Each tuple is made up by:
# Item #0: a pass phrase
# Item #1: salt (8 bytes encoded in hex)
# Item #2: output key length
# Item #3: iterations to use
# Item #4: expected result (encoded in hex)
_testData = (
# From http://www.di-mgt.com.au/cryptoKDFs.html#examplespbkdf
("password","78578E5A5D63CB06",16,1000,"DC19847E05C64D2FAF10EBFB4A3D2A20"),
)
def test1(self):
v = self._testData[0]
res = PBKDF1(v[0], t2b(v[1]), v[2], v[3], SHA1)
self.assertEqual(res, t2b(v[4]))
class PBKDF2_Tests(unittest.TestCase):
# List of tuples with test data.
# Each tuple is made up by:
# Item #0: a pass phrase
# Item #1: salt (encoded in hex)
# Item #2: output key length
# Item #3: iterations to use
# Item #4: expected result (encoded in hex)
_testData = (
# From http://www.di-mgt.com.au/cryptoKDFs.html#examplespbkdf
("password","78578E5A5D63CB06",24,2048,"BFDE6BE94DF7E11DD409BCE20A0255EC327CB936FFE93643"),
# From RFC 6050
("password","73616c74", 20, 1, "0c60c80f961f0e71f3a9b524af6012062fe037a6"),
("password","73616c74", 20, 2, "ea6c014dc72d6f8ccd1ed92ace1d41f0d8de8957"),
("password","73616c74", 20, 4096, "4b007901b765489abead49d926f721d065a429c1"),
("passwordPASSWORDpassword","73616c7453414c5473616c7453414c5473616c7453414c5473616c7453414c5473616c74",
25, 4096, "3d2eec4fe41c849b80c8d83662c0e44a8b291a964cf2f07038"),
( 'pass\x00word',"7361006c74",16,4096, "56fa6aa75548099dcc37d7f03425e0c3"),
)
def test1(self):
# Test only for HMAC-SHA1 as PRF
def prf(p,s):
return HMAC.new(p,s,SHA1).digest()
for i in range(len(self._testData)):
v = self._testData[i]
res = PBKDF2(v[0], t2b(v[1]), v[2], v[3])
res2 = PBKDF2(v[0], t2b(v[1]), v[2], v[3], prf)
self.assertEqual(res, t2b(v[4]))
self.assertEqual(res, res2)
def test2(self):
"""From draft-josefsson-scrypt-kdf-01, Chapter 10"""
output_1 = t2b("""
55 ac 04 6e 56 e3 08 9f ec 16 91 c2 25 44 b6 05
f9 41 85 21 6d de 04 65 e6 8b 9d 57 c2 0d ac bc
49 ca 9c cc f1 79 b6 45 99 16 64 b3 9d 77 ef 31
7c 71 b8 45 b1 e3 0b d5 09 11 20 41 d3 a1 97 83
""")
output_2 = t2b("""
4d dc d8 f6 0b 98 be 21 83 0c ee 5e f2 27 01 f9
64 1a 44 18 d0 4c 04 14 ae ff 08 87 6b 34 ab 56
a1 d4 25 a1 22 58 33 54 9a db 84 1b 51 c9 b3 17
6a 27 2b de bb a1 d0 78 47 8f 62 b3 97 f3 3c 8d
""")
prf_hmac_sha256 = lambda p, s: HMAC.new(p, s, SHA256).digest()
output = PBKDF2(b("passwd"), b("salt"), 64, 1, prf=prf_hmac_sha256)
self.assertEqual(output, output_1)
output = PBKDF2(b("Password"), b("NaCl"), 64, 80000, prf=prf_hmac_sha256)
self.assertEqual(output, output_2)
class S2V_Tests(unittest.TestCase):
# Sequence of test vectors.
# Each test vector is made up by:
# Item #0: a tuple of strings
# Item #1: an AES key
# Item #2: the result
# Item #3: the cipher module S2V is based on
# Everything is hex encoded
_testData = [
# RFC5297, A.1
(
( '101112131415161718191a1b1c1d1e1f2021222324252627',
'112233445566778899aabbccddee' ),
'fffefdfcfbfaf9f8f7f6f5f4f3f2f1f0',
'85632d07c6e8f37f950acd320a2ecc93',
AES
),
# RFC5297, A.2
(
( '00112233445566778899aabbccddeeffdeaddadadeaddadaffeeddcc'+
'bbaa99887766554433221100',
'102030405060708090a0',
'09f911029d74e35bd84156c5635688c0',
'7468697320697320736f6d6520706c61'+
'696e7465787420746f20656e63727970'+
'74207573696e67205349562d414553'),
'7f7e7d7c7b7a79787776757473727170',
'7bdb6e3b432667eb06f4d14bff2fbd0f',
AES
),
]
def test1(self):
"""Verify correctness of test vector"""
for tv in self._testData:
s2v = _S2V.new(t2b(tv[1]), tv[3])
for s in tv[0]:
s2v.update(t2b(s))
result = s2v.derive()
self.assertEqual(result, t2b(tv[2]))
def test2(self):
"""Verify that no more than 127(AES) and 63(TDES)
components are accepted."""
key = bchr(0) * 8 + bchr(255) * 8
for module in (AES, DES3):
s2v = _S2V.new(key, module)
max_comps = module.block_size*8-1
for i in range(max_comps):
s2v.update(b("XX"))
self.assertRaises(TypeError, s2v.update, b("YY"))
class HKDF_Tests(unittest.TestCase):
# Test vectors from RFC5869, Appendix A
# Each tuple is made up by:
# Item #0: hash module
# Item #1: secret
# Item #2: salt
# Item #3: context
# Item #4: expected result
_test_vector = (
(
SHA256,
"0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b",
"000102030405060708090a0b0c",
"f0f1f2f3f4f5f6f7f8f9",
42,
"3cb25f25faacd57a90434f64d0362f2a" +
"2d2d0a90cf1a5a4c5db02d56ecc4c5bf" +
"34007208d5b887185865"
),
(
SHA256,
"000102030405060708090a0b0c0d0e0f" +
"101112131415161718191a1b1c1d1e1f" +
"202122232425262728292a2b2c2d2e2f" +
"303132333435363738393a3b3c3d3e3f" +
"404142434445464748494a4b4c4d4e4f",
"606162636465666768696a6b6c6d6e6f" +
"707172737475767778797a7b7c7d7e7f" +
"808182838485868788898a8b8c8d8e8f" +
"909192939495969798999a9b9c9d9e9f" +
"a0a1a2a3a4a5a6a7a8a9aaabacadaeaf",
"b0b1b2b3b4b5b6b7b8b9babbbcbdbebf" +
"c0c1c2c3c4c5c6c7c8c9cacbcccdcecf" +
"d0d1d2d3d4d5d6d7d8d9dadbdcdddedf" +
"e0e1e2e3e4e5e6e7e8e9eaebecedeeef" +
"f0f1f2f3f4f5f6f7f8f9fafbfcfdfeff",
82,
"b11e398dc80327a1c8e7f78c596a4934" +
"4f012eda2d4efad8a050cc4c19afa97c" +
"59045a99cac7827271cb41c65e590e09" +
"da3275600c2f09b8367793a9aca3db71" +
"cc30c58179ec3e87c14c01d5c1f3434f" +
"1d87"
),
(
SHA256,
"0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b",
None,
None,
42,
"8da4e775a563c18f715f802a063c5a31" +
"b8a11f5c5ee1879ec3454e5f3c738d2d" +
"9d201395faa4b61a96c8"
),
(
SHA1,
"0b0b0b0b0b0b0b0b0b0b0b",
"000102030405060708090a0b0c",
"f0f1f2f3f4f5f6f7f8f9",
42,
"085a01ea1b10f36933068b56efa5ad81" +
"a4f14b822f5b091568a9cdd4f155fda2" +
"c22e422478d305f3f896"
),
(
SHA1,
"000102030405060708090a0b0c0d0e0f" +
"101112131415161718191a1b1c1d1e1f" +
"202122232425262728292a2b2c2d2e2f" +
"303132333435363738393a3b3c3d3e3f" +
"404142434445464748494a4b4c4d4e4f",
"606162636465666768696a6b6c6d6e6f" +
"707172737475767778797a7b7c7d7e7f" +
"808182838485868788898a8b8c8d8e8f" +
"909192939495969798999a9b9c9d9e9f" +
"a0a1a2a3a4a5a6a7a8a9aaabacadaeaf",
"b0b1b2b3b4b5b6b7b8b9babbbcbdbebf" +
"c0c1c2c3c4c5c6c7c8c9cacbcccdcecf" +
"d0d1d2d3d4d5d6d7d8d9dadbdcdddedf" +
"e0e1e2e3e4e5e6e7e8e9eaebecedeeef" +
"f0f1f2f3f4f5f6f7f8f9fafbfcfdfeff",
82,
"0bd770a74d1160f7c9f12cd5912a06eb" +
"ff6adcae899d92191fe4305673ba2ffe" +
"8fa3f1a4e5ad79f3f334b3b202b2173c" +
"486ea37ce3d397ed034c7f9dfeb15c5e" +
"927336d0441f4c4300e2cff0d0900b52" +
"d3b4"
),
(
SHA1,
"0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b",
"",
"",
42,
"0ac1af7002b3d761d1e55298da9d0506" +
"b9ae52057220a306e07b6b87e8df21d0" +
"ea00033de03984d34918"
),
(
SHA1,
"0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c",
None,
"",
42,
"2c91117204d745f3500d636a62f64f0a" +
"b3bae548aa53d423b0d1f27ebba6f5e5" +
"673a081d70cce7acfc48"
)
)
def test1(self):
for tv in self._test_vector:
secret, salt, info, exp = [ t2b(tv[x]) for x in (1,2,3,5) ]
key_len, hashmod = [ tv[x] for x in (4,0) ]
output = HKDF(secret, key_len, salt, hashmod, 1, info)
self.assertEqual(output, exp)
def test2(self):
ref = HKDF(b("XXXXXX"), 12, b("YYYY"), SHA1)
# Same output, but this time split over 2 keys
key1, key2 = HKDF(b("XXXXXX"), 6, b("YYYY"), SHA1, 2)
self.assertEqual((ref[:6], ref[6:]), (key1, key2))
# Same output, but this time split over 3 keys
key1, key2, key3 = HKDF(b("XXXXXX"), 4, b("YYYY"), SHA1, 3)
self.assertEqual((ref[:4], ref[4:8], ref[8:]), (key1, key2, key3))
class scrypt_Tests(unittest.TestCase):
# Test vectors taken from
# http://tools.ietf.org/html/draft-josefsson-scrypt-kdf-00
data = (
(
"",
"",
16, # 2K
1,
1,
"""
77 d6 57 62 38 65 7b 20 3b 19 ca 42 c1 8a 04 97
f1 6b 48 44 e3 07 4a e8 df df fa 3f ed e2 14 42
fc d0 06 9d ed 09 48 f8 32 6a 75 3a 0f c8 1f 17
e8 d3 e0 fb 2e 0d 36 28 cf 35 e2 0c 38 d1 89 06
"""
),
(
"password",
"NaCl",
1024, # 1M
8,
16,
"""
fd ba be 1c 9d 34 72 00 78 56 e7 19 0d 01 e9 fe
7c 6a d7 cb c8 23 78 30 e7 73 76 63 4b 37 31 62
2e af 30 d9 2e 22 a3 88 6f f1 09 27 9d 98 30 da
c7 27 af b9 4a 83 ee 6d 83 60 cb df a2 cc 06 40
"""
),
(
"pleaseletmein",
"SodiumChloride",
16384, # 16M
8,
1,
"""
70 23 bd cb 3a fd 73 48 46 1c 06 cd 81 fd 38 eb
fd a8 fb ba 90 4f 8e 3e a9 b5 43 f6 54 5d a1 f2
d5 43 29 55 61 3f 0f cf 62 d4 97 05 24 2a 9a f9
e6 1e 85 dc 0d 65 1e 40 df cf 01 7b 45 57 58 87
"""
),
(
"pleaseletmein",
"SodiumChloride",
1048576, # 1G
8,
1,
"""
21 01 cb 9b 6a 51 1a ae ad db be 09 cf 70 f8 81
ec 56 8d 57 4a 2f fd 4d ab e5 ee 98 20 ad aa 47
8e 56 fd 8f 4b a5 d0 9f fa 1c 6d 92 7c 40 f4 c3
37 30 40 49 e8 a9 52 fb cb f4 5c 6f a7 7a 41 a4
"""
),
)
def setUp(self):
new_test_vectors = []
for tv in self.data:
new_tv = TestVector()
new_tv.P = b(tv[0])
new_tv.S = b(tv[1])
new_tv.N = tv[2]
new_tv.r = tv[3]
new_tv.p = tv[4]
new_tv.output = t2b(tv[5])
new_tv.dkLen = len(new_tv.output)
new_test_vectors.append(new_tv)
self.data = new_test_vectors
def _test1(self):
b_input = t2b("""
f7 ce 0b 65 3d 2d 72 a4 10 8c f5 ab e9 12 ff dd
77 76 16 db bb 27 a7 0e 82 04 f3 ae 2d 0f 6f ad
89 f6 8f 48 11 d1 e8 7b cc 3b d7 40 0a 9f fd 29
09 4f 01 84 63 95 74 f3 9a e5 a1 31 52 17 bc d7
89 49 91 44 72 13 bb 22 6c 25 b5 4d a8 63 70 fb
cd 98 43 80 37 46 66 bb 8f fc b5 bf 40 c2 54 b0
67 d2 7c 51 ce 4a d5 fe d8 29 c9 0b 50 5a 57 1b
7f 4d 1c ad 6a 52 3c da 77 0e 67 bc ea af 7e 89
""")
b_output = t2b("""
79 cc c1 93 62 9d eb ca 04 7f 0b 70 60 4b f6 b6
2c e3 dd 4a 96 26 e3 55 fa fc 61 98 e6 ea 2b 46
d5 84 13 67 3b 99 b0 29 d6 65 c3 57 60 1f b4 26
a0 b2 f4 bb a2 00 ee 9f 0a 43 d1 9b 57 1a 9c 71
ef 11 42 e6 5d 5a 26 6f dd ca 83 2c e5 9f aa 7c
ac 0b 9c f1 be 2b ff ca 30 0d 01 ee 38 76 19 c4
ae 12 fd 44 38 f2 03 a0 e4 e1 c4 7e c3 14 86 1f
4e 90 87 cb 33 39 6a 68 73 e8 f9 d2 53 9a 4b 8e
""")
from Crypto.Protocol.KDF import _scryptROMix
output = _scryptROMix(b_input, 16)
self.assertEqual(output, b_output)
def test2(self):
for tv in self.data:
# TODO: add runtime flag to enable test vectors
# with humongous memory usage
if tv.N > 100000:
continue
output = scrypt(tv.P, tv.S, tv.dkLen, tv.N, tv.r, tv.p)
self.assertEqual(output, tv.output)
def test3(self):
ref = scrypt(b("password"), b("salt"), 12, 16, 1, 1)
# Same output, but this time split over 2 keys
key1, key2 = scrypt(b("password"), b("salt"), 6, 16, 1, 1, 2)
self.assertEqual((ref[:6], ref[6:]), (key1, key2))
# Same output, but this time split over 3 keys
key1, key2, key3 = scrypt(b("password"), b("salt"), 4, 16, 1, 1, 3)
self.assertEqual((ref[:4], ref[4:8], ref[8:]), (key1, key2, key3))
def get_tests(config={}):
tests = []
tests += list_test_cases(PBKDF1_Tests)
tests += list_test_cases(PBKDF2_Tests)
tests += list_test_cases(S2V_Tests)
tests += list_test_cases(HKDF_Tests)
tests += list_test_cases(scrypt_Tests)
return tests
if __name__ == '__main__':
suite = lambda: unittest.TestSuite(get_tests())
unittest.main(defaultTest='suite')
# vim:set ts=4 sw=4 sts=4