Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/skimage/morphology/convex_hull.py

165 lines
6.3 KiB
Python
Raw Normal View History

"""Convex Hull."""
from itertools import product
import numpy as np
from scipy.spatial import ConvexHull
from ..measure.pnpoly import grid_points_in_poly
from ._convex_hull import possible_hull
from ..measure._label import label
from ..util import unique_rows
from .._shared.utils import warn
__all__ = ['convex_hull_image', 'convex_hull_object']
def _offsets_diamond(ndim):
offsets = np.zeros((2 * ndim, ndim))
for vertex, (axis, offset) in enumerate(product(range(ndim), (-0.5, 0.5))):
offsets[vertex, axis] = offset
return offsets
def convex_hull_image(image, offset_coordinates=True, tolerance=1e-10):
"""Compute the convex hull image of a binary image.
The convex hull is the set of pixels included in the smallest convex
polygon that surround all white pixels in the input image.
Parameters
----------
image : array
Binary input image. This array is cast to bool before processing.
offset_coordinates : bool, optional
If ``True``, a pixel at coordinate, e.g., (4, 7) will be represented
by coordinates (3.5, 7), (4.5, 7), (4, 6.5), and (4, 7.5). This adds
some "extent" to a pixel when computing the hull.
tolerance : float, optional
Tolerance when determining whether a point is inside the hull. Due
to numerical floating point errors, a tolerance of 0 can result in
some points erroneously being classified as being outside the hull.
Returns
-------
hull : (M, N) array of bool
Binary image with pixels in convex hull set to True.
References
----------
.. [1] https://blogs.mathworks.com/steve/2011/10/04/binary-image-convex-hull-algorithm-notes/
"""
ndim = image.ndim
if np.count_nonzero(image) == 0:
warn("Input image is entirely zero, no valid convex hull. "
"Returning empty image", UserWarning)
return np.zeros(image.shape, dtype=np.bool_)
# In 2D, we do an optimisation by choosing only pixels that are
# the starting or ending pixel of a row or column. This vastly
# limits the number of coordinates to examine for the virtual hull.
if ndim == 2:
coords = possible_hull(np.ascontiguousarray(image, dtype=np.uint8))
else:
coords = np.transpose(np.nonzero(image))
if offset_coordinates:
# when offsetting, we multiply number of vertices by 2 * ndim.
# therefore, we reduce the number of coordinates by using a
# convex hull on the original set, before offsetting.
hull0 = ConvexHull(coords)
coords = hull0.points[hull0.vertices]
# Add a vertex for the middle of each pixel edge
if offset_coordinates:
offsets = _offsets_diamond(image.ndim)
coords = (coords[:, np.newaxis, :] + offsets).reshape(-1, ndim)
# repeated coordinates can *sometimes* cause problems in
# scipy.spatial.ConvexHull, so we remove them.
coords = unique_rows(coords)
# Find the convex hull
hull = ConvexHull(coords)
vertices = hull.points[hull.vertices]
# If 2D, use fast Cython function to locate convex hull pixels
if ndim == 2:
mask = grid_points_in_poly(image.shape, vertices)
else:
gridcoords = np.reshape(np.mgrid[tuple(map(slice, image.shape))],
(ndim, -1))
# A point is in the hull if it satisfies all of the hull's inequalities
coords_in_hull = np.all(hull.equations[:, :ndim].dot(gridcoords) +
hull.equations[:, ndim:] < tolerance, axis=0)
mask = np.reshape(coords_in_hull, image.shape)
return mask
def convex_hull_object(image, neighbors=None, *, connectivity=None):
r"""Compute the convex hull image of individual objects in a binary image.
The convex hull is the set of pixels included in the smallest convex
polygon that surround all white pixels in the input image.
Parameters
----------
image : (M, N) ndarray
Binary input image.
neighbors : {4, 8}, int, optional
Whether to use 4 or 8 adjacent pixels as neighbors.
If ``None``, set to 8. **Deprecated, use** ``connectivity`` **instead.**
connectivity : {1, 2}, int, optional
Determines the neighbors of each pixel. Adjacent elements
within a squared distance of ``connectivity`` from pixel center
are considered neighbors. If ``None``, set to 2::
1-connectivity 2-connectivity
[ ] [ ] [ ] [ ]
| \ | /
[ ]--[x]--[ ] [ ]--[x]--[ ]
| / | \
[ ] [ ] [ ] [ ]
Returns
-------
hull : ndarray of bool
Binary image with pixels inside convex hull set to ``True``.
Notes
-----
This function uses ``skimage.morphology.label`` to define unique objects,
finds the convex hull of each using ``convex_hull_image``, and combines
these regions with logical OR. Be aware the convex hulls of unconnected
objects may overlap in the result. If this is suspected, consider using
convex_hull_image separately on each object or adjust ``connectivity``.
"""
if image.ndim > 2:
raise ValueError("Input must be a 2D image")
if neighbors is None and connectivity is None:
connectivity = 2
elif neighbors is not None:
# Backward-compatibility
if neighbors == 4:
connectivity = 1
elif neighbors == 8:
connectivity = 2
else:
raise ValueError('`neighbors` must be either 4 or 8.')
warn("The argument `neighbors` is deprecated and will be removed in "
"scikit-image 0.18, use `connectivity` instead. "
"For neighbors={neighbors}, use connectivity={connectivity}"
"".format(neighbors=neighbors, connectivity=connectivity),
stacklevel=2)
else:
if connectivity not in (1, 2):
raise ValueError('`connectivity` must be either 1 or 2.')
labeled_im = label(image, connectivity=connectivity, background=0)
convex_obj = np.zeros(image.shape, dtype=bool)
convex_img = np.zeros(image.shape, dtype=bool)
for i in range(1, labeled_im.max() + 1):
convex_obj = convex_hull_image(labeled_im == i)
convex_img = np.logical_or(convex_img, convex_obj)
return convex_img