Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/skimage/metrics/_contingency_table.py

41 lines
1.2 KiB
Python
Raw Normal View History

import scipy.sparse as sparse
import numpy as np
__all__ = ['contingency_table']
def contingency_table(im_true, im_test, *, ignore_labels=(), normalize=False):
"""
Return the contingency table for all regions in matched segmentations.
Parameters
----------
im_true : ndarray of int
Ground-truth label image, same shape as im_test.
im_test : ndarray of int
Test image.
ignore_labels : sequence of int, optional
Labels to ignore. Any part of the true image labeled with any of these
values will not be counted in the score.
normalize : bool
Determines if the contingency table is normalized by pixel count.
Returns
-------
cont : scipy.sparse.csr_matrix
A contingency table. `cont[i, j]` will equal the number of voxels
labeled `i` in `im_true` and `j` in `im_test`.
"""
im_test_r = im_test.ravel()
im_true_r = im_true.ravel()
ignored = np.zeros(im_true_r.shape, np.bool)
for label in ignore_labels:
ignored[im_true_r == label] = True
data = np.ones(im_true_r.shape)
data[ignored] = 0
if normalize:
data = data / im_true.size
cont = sparse.coo_matrix((data, (im_true_r, im_test_r))).tocsr()
return cont