230 lines
8.2 KiB
Python
230 lines
8.2 KiB
Python
|
import numpy as np
|
||
|
from numpy import cos, sin, pi
|
||
|
from numpy.testing import (assert_equal, assert_almost_equal, assert_allclose,
|
||
|
assert_, suppress_warnings)
|
||
|
|
||
|
from scipy.integrate import (quadrature, romberg, romb, newton_cotes,
|
||
|
cumtrapz, quad, simps, fixed_quad,
|
||
|
AccuracyWarning)
|
||
|
|
||
|
|
||
|
class TestFixedQuad(object):
|
||
|
def test_scalar(self):
|
||
|
n = 4
|
||
|
func = lambda x: x**(2*n - 1)
|
||
|
expected = 1/(2*n)
|
||
|
got, _ = fixed_quad(func, 0, 1, n=n)
|
||
|
# quadrature exact for this input
|
||
|
assert_allclose(got, expected, rtol=1e-12)
|
||
|
|
||
|
def test_vector(self):
|
||
|
n = 4
|
||
|
p = np.arange(1, 2*n)
|
||
|
func = lambda x: x**p[:,None]
|
||
|
expected = 1/(p + 1)
|
||
|
got, _ = fixed_quad(func, 0, 1, n=n)
|
||
|
assert_allclose(got, expected, rtol=1e-12)
|
||
|
|
||
|
|
||
|
class TestQuadrature(object):
|
||
|
def quad(self, x, a, b, args):
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def test_quadrature(self):
|
||
|
# Typical function with two extra arguments:
|
||
|
def myfunc(x, n, z): # Bessel function integrand
|
||
|
return cos(n*x-z*sin(x))/pi
|
||
|
val, err = quadrature(myfunc, 0, pi, (2, 1.8))
|
||
|
table_val = 0.30614353532540296487
|
||
|
assert_almost_equal(val, table_val, decimal=7)
|
||
|
|
||
|
def test_quadrature_rtol(self):
|
||
|
def myfunc(x, n, z): # Bessel function integrand
|
||
|
return 1e90 * cos(n*x-z*sin(x))/pi
|
||
|
val, err = quadrature(myfunc, 0, pi, (2, 1.8), rtol=1e-10)
|
||
|
table_val = 1e90 * 0.30614353532540296487
|
||
|
assert_allclose(val, table_val, rtol=1e-10)
|
||
|
|
||
|
def test_quadrature_miniter(self):
|
||
|
# Typical function with two extra arguments:
|
||
|
def myfunc(x, n, z): # Bessel function integrand
|
||
|
return cos(n*x-z*sin(x))/pi
|
||
|
table_val = 0.30614353532540296487
|
||
|
for miniter in [5, 52]:
|
||
|
val, err = quadrature(myfunc, 0, pi, (2, 1.8), miniter=miniter)
|
||
|
assert_almost_equal(val, table_val, decimal=7)
|
||
|
assert_(err < 1.0)
|
||
|
|
||
|
def test_quadrature_single_args(self):
|
||
|
def myfunc(x, n):
|
||
|
return 1e90 * cos(n*x-1.8*sin(x))/pi
|
||
|
val, err = quadrature(myfunc, 0, pi, args=2, rtol=1e-10)
|
||
|
table_val = 1e90 * 0.30614353532540296487
|
||
|
assert_allclose(val, table_val, rtol=1e-10)
|
||
|
|
||
|
def test_romberg(self):
|
||
|
# Typical function with two extra arguments:
|
||
|
def myfunc(x, n, z): # Bessel function integrand
|
||
|
return cos(n*x-z*sin(x))/pi
|
||
|
val = romberg(myfunc, 0, pi, args=(2, 1.8))
|
||
|
table_val = 0.30614353532540296487
|
||
|
assert_almost_equal(val, table_val, decimal=7)
|
||
|
|
||
|
def test_romberg_rtol(self):
|
||
|
# Typical function with two extra arguments:
|
||
|
def myfunc(x, n, z): # Bessel function integrand
|
||
|
return 1e19*cos(n*x-z*sin(x))/pi
|
||
|
val = romberg(myfunc, 0, pi, args=(2, 1.8), rtol=1e-10)
|
||
|
table_val = 1e19*0.30614353532540296487
|
||
|
assert_allclose(val, table_val, rtol=1e-10)
|
||
|
|
||
|
def test_romb(self):
|
||
|
assert_equal(romb(np.arange(17)), 128)
|
||
|
|
||
|
def test_romb_gh_3731(self):
|
||
|
# Check that romb makes maximal use of data points
|
||
|
x = np.arange(2**4+1)
|
||
|
y = np.cos(0.2*x)
|
||
|
val = romb(y)
|
||
|
val2, err = quad(lambda x: np.cos(0.2*x), x.min(), x.max())
|
||
|
assert_allclose(val, val2, rtol=1e-8, atol=0)
|
||
|
|
||
|
# should be equal to romb with 2**k+1 samples
|
||
|
with suppress_warnings() as sup:
|
||
|
sup.filter(AccuracyWarning, "divmax .4. exceeded")
|
||
|
val3 = romberg(lambda x: np.cos(0.2*x), x.min(), x.max(), divmax=4)
|
||
|
assert_allclose(val, val3, rtol=1e-12, atol=0)
|
||
|
|
||
|
def test_non_dtype(self):
|
||
|
# Check that we work fine with functions returning float
|
||
|
import math
|
||
|
valmath = romberg(math.sin, 0, 1)
|
||
|
expected_val = 0.45969769413185085
|
||
|
assert_almost_equal(valmath, expected_val, decimal=7)
|
||
|
|
||
|
def test_newton_cotes(self):
|
||
|
"""Test the first few degrees, for evenly spaced points."""
|
||
|
n = 1
|
||
|
wts, errcoff = newton_cotes(n, 1)
|
||
|
assert_equal(wts, n*np.array([0.5, 0.5]))
|
||
|
assert_almost_equal(errcoff, -n**3/12.0)
|
||
|
|
||
|
n = 2
|
||
|
wts, errcoff = newton_cotes(n, 1)
|
||
|
assert_almost_equal(wts, n*np.array([1.0, 4.0, 1.0])/6.0)
|
||
|
assert_almost_equal(errcoff, -n**5/2880.0)
|
||
|
|
||
|
n = 3
|
||
|
wts, errcoff = newton_cotes(n, 1)
|
||
|
assert_almost_equal(wts, n*np.array([1.0, 3.0, 3.0, 1.0])/8.0)
|
||
|
assert_almost_equal(errcoff, -n**5/6480.0)
|
||
|
|
||
|
n = 4
|
||
|
wts, errcoff = newton_cotes(n, 1)
|
||
|
assert_almost_equal(wts, n*np.array([7.0, 32.0, 12.0, 32.0, 7.0])/90.0)
|
||
|
assert_almost_equal(errcoff, -n**7/1935360.0)
|
||
|
|
||
|
def test_newton_cotes2(self):
|
||
|
"""Test newton_cotes with points that are not evenly spaced."""
|
||
|
|
||
|
x = np.array([0.0, 1.5, 2.0])
|
||
|
y = x**2
|
||
|
wts, errcoff = newton_cotes(x)
|
||
|
exact_integral = 8.0/3
|
||
|
numeric_integral = np.dot(wts, y)
|
||
|
assert_almost_equal(numeric_integral, exact_integral)
|
||
|
|
||
|
x = np.array([0.0, 1.4, 2.1, 3.0])
|
||
|
y = x**2
|
||
|
wts, errcoff = newton_cotes(x)
|
||
|
exact_integral = 9.0
|
||
|
numeric_integral = np.dot(wts, y)
|
||
|
assert_almost_equal(numeric_integral, exact_integral)
|
||
|
|
||
|
def test_simps(self):
|
||
|
y = np.arange(17)
|
||
|
assert_equal(simps(y), 128)
|
||
|
assert_equal(simps(y, dx=0.5), 64)
|
||
|
assert_equal(simps(y, x=np.linspace(0, 4, 17)), 32)
|
||
|
|
||
|
y = np.arange(4)
|
||
|
x = 2**y
|
||
|
assert_equal(simps(y, x=x, even='avg'), 13.875)
|
||
|
assert_equal(simps(y, x=x, even='first'), 13.75)
|
||
|
assert_equal(simps(y, x=x, even='last'), 14)
|
||
|
|
||
|
|
||
|
class TestCumtrapz(object):
|
||
|
def test_1d(self):
|
||
|
x = np.linspace(-2, 2, num=5)
|
||
|
y = x
|
||
|
y_int = cumtrapz(y, x, initial=0)
|
||
|
y_expected = [0., -1.5, -2., -1.5, 0.]
|
||
|
assert_allclose(y_int, y_expected)
|
||
|
|
||
|
y_int = cumtrapz(y, x, initial=None)
|
||
|
assert_allclose(y_int, y_expected[1:])
|
||
|
|
||
|
def test_y_nd_x_nd(self):
|
||
|
x = np.arange(3 * 2 * 4).reshape(3, 2, 4)
|
||
|
y = x
|
||
|
y_int = cumtrapz(y, x, initial=0)
|
||
|
y_expected = np.array([[[0., 0.5, 2., 4.5],
|
||
|
[0., 4.5, 10., 16.5]],
|
||
|
[[0., 8.5, 18., 28.5],
|
||
|
[0., 12.5, 26., 40.5]],
|
||
|
[[0., 16.5, 34., 52.5],
|
||
|
[0., 20.5, 42., 64.5]]])
|
||
|
|
||
|
assert_allclose(y_int, y_expected)
|
||
|
|
||
|
# Try with all axes
|
||
|
shapes = [(2, 2, 4), (3, 1, 4), (3, 2, 3)]
|
||
|
for axis, shape in zip([0, 1, 2], shapes):
|
||
|
y_int = cumtrapz(y, x, initial=3.45, axis=axis)
|
||
|
assert_equal(y_int.shape, (3, 2, 4))
|
||
|
y_int = cumtrapz(y, x, initial=None, axis=axis)
|
||
|
assert_equal(y_int.shape, shape)
|
||
|
|
||
|
def test_y_nd_x_1d(self):
|
||
|
y = np.arange(3 * 2 * 4).reshape(3, 2, 4)
|
||
|
x = np.arange(4)**2
|
||
|
# Try with all axes
|
||
|
ys_expected = (
|
||
|
np.array([[[4., 5., 6., 7.],
|
||
|
[8., 9., 10., 11.]],
|
||
|
[[40., 44., 48., 52.],
|
||
|
[56., 60., 64., 68.]]]),
|
||
|
np.array([[[2., 3., 4., 5.]],
|
||
|
[[10., 11., 12., 13.]],
|
||
|
[[18., 19., 20., 21.]]]),
|
||
|
np.array([[[0.5, 5., 17.5],
|
||
|
[4.5, 21., 53.5]],
|
||
|
[[8.5, 37., 89.5],
|
||
|
[12.5, 53., 125.5]],
|
||
|
[[16.5, 69., 161.5],
|
||
|
[20.5, 85., 197.5]]]))
|
||
|
|
||
|
for axis, y_expected in zip([0, 1, 2], ys_expected):
|
||
|
y_int = cumtrapz(y, x=x[:y.shape[axis]], axis=axis, initial=None)
|
||
|
assert_allclose(y_int, y_expected)
|
||
|
|
||
|
def test_x_none(self):
|
||
|
y = np.linspace(-2, 2, num=5)
|
||
|
|
||
|
y_int = cumtrapz(y)
|
||
|
y_expected = [-1.5, -2., -1.5, 0.]
|
||
|
assert_allclose(y_int, y_expected)
|
||
|
|
||
|
y_int = cumtrapz(y, initial=1.23)
|
||
|
y_expected = [1.23, -1.5, -2., -1.5, 0.]
|
||
|
assert_allclose(y_int, y_expected)
|
||
|
|
||
|
y_int = cumtrapz(y, dx=3)
|
||
|
y_expected = [-4.5, -6., -4.5, 0.]
|
||
|
assert_allclose(y_int, y_expected)
|
||
|
|
||
|
y_int = cumtrapz(y, dx=3, initial=1.23)
|
||
|
y_expected = [1.23, -4.5, -6., -4.5, 0.]
|
||
|
assert_allclose(y_int, y_expected)
|