183 lines
5.8 KiB
Python
183 lines
5.8 KiB
Python
|
"""Priority queue class with updatable priorities.
|
||
|
"""
|
||
|
|
||
|
import heapq
|
||
|
|
||
|
__all__ = ["MappedQueue"]
|
||
|
|
||
|
|
||
|
class MappedQueue:
|
||
|
"""The MappedQueue class implements an efficient minimum heap. The
|
||
|
smallest element can be popped in O(1) time, new elements can be pushed
|
||
|
in O(log n) time, and any element can be removed or updated in O(log n)
|
||
|
time. The queue cannot contain duplicate elements and an attempt to push an
|
||
|
element already in the queue will have no effect.
|
||
|
|
||
|
MappedQueue complements the heapq package from the python standard
|
||
|
library. While MappedQueue is designed for maximum compatibility with
|
||
|
heapq, it has slightly different functionality.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
|
||
|
A `MappedQueue` can be created empty or optionally given an array of
|
||
|
initial elements. Calling `push()` will add an element and calling `pop()`
|
||
|
will remove and return the smallest element.
|
||
|
|
||
|
>>> q = MappedQueue([916, 50, 4609, 493, 237])
|
||
|
>>> q.push(1310)
|
||
|
True
|
||
|
>>> x = [q.pop() for i in range(len(q.h))]
|
||
|
>>> x
|
||
|
[50, 237, 493, 916, 1310, 4609]
|
||
|
|
||
|
Elements can also be updated or removed from anywhere in the queue.
|
||
|
|
||
|
>>> q = MappedQueue([916, 50, 4609, 493, 237])
|
||
|
>>> q.remove(493)
|
||
|
>>> q.update(237, 1117)
|
||
|
>>> x = [q.pop() for i in range(len(q.h))]
|
||
|
>>> x
|
||
|
[50, 916, 1117, 4609]
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2001).
|
||
|
Introduction to algorithms second edition.
|
||
|
.. [2] Knuth, D. E. (1997). The art of computer programming (Vol. 3).
|
||
|
Pearson Education.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, data=[]):
|
||
|
"""Priority queue class with updatable priorities.
|
||
|
"""
|
||
|
self.h = list(data)
|
||
|
self.d = dict()
|
||
|
self._heapify()
|
||
|
|
||
|
def __len__(self):
|
||
|
return len(self.h)
|
||
|
|
||
|
def _heapify(self):
|
||
|
"""Restore heap invariant and recalculate map."""
|
||
|
heapq.heapify(self.h)
|
||
|
self.d = {elt: pos for pos, elt in enumerate(self.h)}
|
||
|
if len(self.h) != len(self.d):
|
||
|
raise AssertionError("Heap contains duplicate elements")
|
||
|
|
||
|
def push(self, elt):
|
||
|
"""Add an element to the queue."""
|
||
|
# If element is already in queue, do nothing
|
||
|
if elt in self.d:
|
||
|
return False
|
||
|
# Add element to heap and dict
|
||
|
pos = len(self.h)
|
||
|
self.h.append(elt)
|
||
|
self.d[elt] = pos
|
||
|
# Restore invariant by sifting down
|
||
|
self._siftdown(pos)
|
||
|
return True
|
||
|
|
||
|
def pop(self):
|
||
|
"""Remove and return the smallest element in the queue."""
|
||
|
# Remove smallest element
|
||
|
elt = self.h[0]
|
||
|
del self.d[elt]
|
||
|
# If elt is last item, remove and return
|
||
|
if len(self.h) == 1:
|
||
|
self.h.pop()
|
||
|
return elt
|
||
|
# Replace root with last element
|
||
|
last = self.h.pop()
|
||
|
self.h[0] = last
|
||
|
self.d[last] = 0
|
||
|
# Restore invariant by sifting up, then down
|
||
|
pos = self._siftup(0)
|
||
|
self._siftdown(pos)
|
||
|
# Return smallest element
|
||
|
return elt
|
||
|
|
||
|
def update(self, elt, new):
|
||
|
"""Replace an element in the queue with a new one."""
|
||
|
# Replace
|
||
|
pos = self.d[elt]
|
||
|
self.h[pos] = new
|
||
|
del self.d[elt]
|
||
|
self.d[new] = pos
|
||
|
# Restore invariant by sifting up, then down
|
||
|
pos = self._siftup(pos)
|
||
|
self._siftdown(pos)
|
||
|
|
||
|
def remove(self, elt):
|
||
|
"""Remove an element from the queue."""
|
||
|
# Find and remove element
|
||
|
try:
|
||
|
pos = self.d[elt]
|
||
|
del self.d[elt]
|
||
|
except KeyError:
|
||
|
# Not in queue
|
||
|
raise
|
||
|
# If elt is last item, remove and return
|
||
|
if pos == len(self.h) - 1:
|
||
|
self.h.pop()
|
||
|
return
|
||
|
# Replace elt with last element
|
||
|
last = self.h.pop()
|
||
|
self.h[pos] = last
|
||
|
self.d[last] = pos
|
||
|
# Restore invariant by sifting up, then down
|
||
|
pos = self._siftup(pos)
|
||
|
self._siftdown(pos)
|
||
|
|
||
|
def _siftup(self, pos):
|
||
|
"""Move element at pos down to a leaf by repeatedly moving the smaller
|
||
|
child up."""
|
||
|
h, d = self.h, self.d
|
||
|
elt = h[pos]
|
||
|
# Continue until element is in a leaf
|
||
|
end_pos = len(h)
|
||
|
left_pos = (pos << 1) + 1
|
||
|
while left_pos < end_pos:
|
||
|
# Left child is guaranteed to exist by loop predicate
|
||
|
left = h[left_pos]
|
||
|
try:
|
||
|
right_pos = left_pos + 1
|
||
|
right = h[right_pos]
|
||
|
# Out-of-place, swap with left unless right is smaller
|
||
|
if right < left:
|
||
|
h[pos], h[right_pos] = right, elt
|
||
|
pos, right_pos = right_pos, pos
|
||
|
d[elt], d[right] = pos, right_pos
|
||
|
else:
|
||
|
h[pos], h[left_pos] = left, elt
|
||
|
pos, left_pos = left_pos, pos
|
||
|
d[elt], d[left] = pos, left_pos
|
||
|
except IndexError:
|
||
|
# Left leaf is the end of the heap, swap
|
||
|
h[pos], h[left_pos] = left, elt
|
||
|
pos, left_pos = left_pos, pos
|
||
|
d[elt], d[left] = pos, left_pos
|
||
|
# Update left_pos
|
||
|
left_pos = (pos << 1) + 1
|
||
|
return pos
|
||
|
|
||
|
def _siftdown(self, pos):
|
||
|
"""Restore invariant by repeatedly replacing out-of-place element with
|
||
|
its parent."""
|
||
|
h, d = self.h, self.d
|
||
|
elt = h[pos]
|
||
|
# Continue until element is at root
|
||
|
while pos > 0:
|
||
|
parent_pos = (pos - 1) >> 1
|
||
|
parent = h[parent_pos]
|
||
|
if parent > elt:
|
||
|
# Swap out-of-place element with parent
|
||
|
h[parent_pos], h[pos] = elt, parent
|
||
|
parent_pos, pos = pos, parent_pos
|
||
|
d[elt] = pos
|
||
|
d[parent] = parent_pos
|
||
|
else:
|
||
|
# Invariant is satisfied
|
||
|
break
|
||
|
return pos
|