1536 lines
60 KiB
Python
1536 lines
60 KiB
Python
|
"""
|
||
|
The :mod:`sklearn.model_selection._validation` module includes classes and
|
||
|
functions to validate the model.
|
||
|
"""
|
||
|
|
||
|
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
|
||
|
# Gael Varoquaux <gael.varoquaux@normalesup.org>
|
||
|
# Olivier Grisel <olivier.grisel@ensta.org>
|
||
|
# Raghav RV <rvraghav93@gmail.com>
|
||
|
# License: BSD 3 clause
|
||
|
|
||
|
|
||
|
import warnings
|
||
|
import numbers
|
||
|
import time
|
||
|
from traceback import format_exc
|
||
|
from contextlib import suppress
|
||
|
|
||
|
import numpy as np
|
||
|
import scipy.sparse as sp
|
||
|
from joblib import Parallel, delayed
|
||
|
|
||
|
from ..base import is_classifier, clone
|
||
|
from ..utils import (indexable, check_random_state, _safe_indexing,
|
||
|
_message_with_time)
|
||
|
from ..utils.validation import _check_fit_params
|
||
|
from ..utils.validation import _num_samples
|
||
|
from ..utils.validation import _deprecate_positional_args
|
||
|
from ..utils.metaestimators import _safe_split
|
||
|
from ..metrics import check_scoring
|
||
|
from ..metrics._scorer import _check_multimetric_scoring, _MultimetricScorer
|
||
|
from ..exceptions import FitFailedWarning
|
||
|
from ._split import check_cv
|
||
|
from ..preprocessing import LabelEncoder
|
||
|
|
||
|
|
||
|
__all__ = ['cross_validate', 'cross_val_score', 'cross_val_predict',
|
||
|
'permutation_test_score', 'learning_curve', 'validation_curve']
|
||
|
|
||
|
|
||
|
@_deprecate_positional_args
|
||
|
def cross_validate(estimator, X, y=None, *, groups=None, scoring=None, cv=None,
|
||
|
n_jobs=None, verbose=0, fit_params=None,
|
||
|
pre_dispatch='2*n_jobs', return_train_score=False,
|
||
|
return_estimator=False, error_score=np.nan):
|
||
|
"""Evaluate metric(s) by cross-validation and also record fit/score times.
|
||
|
|
||
|
Read more in the :ref:`User Guide <multimetric_cross_validation>`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
estimator : estimator object implementing 'fit'
|
||
|
The object to use to fit the data.
|
||
|
|
||
|
X : array-like of shape (n_samples, n_features)
|
||
|
The data to fit. Can be for example a list, or an array.
|
||
|
|
||
|
y : array-like of shape (n_samples,) or (n_samples, n_outputs), \
|
||
|
default=None
|
||
|
The target variable to try to predict in the case of
|
||
|
supervised learning.
|
||
|
|
||
|
groups : array-like of shape (n_samples,), default=None
|
||
|
Group labels for the samples used while splitting the dataset into
|
||
|
train/test set. Only used in conjunction with a "Group" :term:`cv`
|
||
|
instance (e.g., :class:`GroupKFold`).
|
||
|
|
||
|
scoring : str, callable, list/tuple, or dict, default=None
|
||
|
A single str (see :ref:`scoring_parameter`) or a callable
|
||
|
(see :ref:`scoring`) to evaluate the predictions on the test set.
|
||
|
|
||
|
For evaluating multiple metrics, either give a list of (unique) strings
|
||
|
or a dict with names as keys and callables as values.
|
||
|
|
||
|
NOTE that when using custom scorers, each scorer should return a single
|
||
|
value. Metric functions returning a list/array of values can be wrapped
|
||
|
into multiple scorers that return one value each.
|
||
|
|
||
|
See :ref:`multimetric_grid_search` for an example.
|
||
|
|
||
|
If None, the estimator's score method is used.
|
||
|
|
||
|
cv : int, cross-validation generator or an iterable, default=None
|
||
|
Determines the cross-validation splitting strategy.
|
||
|
Possible inputs for cv are:
|
||
|
|
||
|
- None, to use the default 5-fold cross validation,
|
||
|
- int, to specify the number of folds in a `(Stratified)KFold`,
|
||
|
- :term:`CV splitter`,
|
||
|
- An iterable yielding (train, test) splits as arrays of indices.
|
||
|
|
||
|
For int/None inputs, if the estimator is a classifier and ``y`` is
|
||
|
either binary or multiclass, :class:`StratifiedKFold` is used. In all
|
||
|
other cases, :class:`KFold` is used.
|
||
|
|
||
|
Refer :ref:`User Guide <cross_validation>` for the various
|
||
|
cross-validation strategies that can be used here.
|
||
|
|
||
|
.. versionchanged:: 0.22
|
||
|
``cv`` default value if None changed from 3-fold to 5-fold.
|
||
|
|
||
|
n_jobs : int, default=None
|
||
|
The number of CPUs to use to do the computation.
|
||
|
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
||
|
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
||
|
for more details.
|
||
|
|
||
|
verbose : int, default=0
|
||
|
The verbosity level.
|
||
|
|
||
|
fit_params : dict, default=None
|
||
|
Parameters to pass to the fit method of the estimator.
|
||
|
|
||
|
pre_dispatch : int or str, default='2*n_jobs'
|
||
|
Controls the number of jobs that get dispatched during parallel
|
||
|
execution. Reducing this number can be useful to avoid an
|
||
|
explosion of memory consumption when more jobs get dispatched
|
||
|
than CPUs can process. This parameter can be:
|
||
|
|
||
|
- None, in which case all the jobs are immediately
|
||
|
created and spawned. Use this for lightweight and
|
||
|
fast-running jobs, to avoid delays due to on-demand
|
||
|
spawning of the jobs
|
||
|
|
||
|
- An int, giving the exact number of total jobs that are
|
||
|
spawned
|
||
|
|
||
|
- A str, giving an expression as a function of n_jobs,
|
||
|
as in '2*n_jobs'
|
||
|
|
||
|
return_train_score : bool, default=False
|
||
|
Whether to include train scores.
|
||
|
Computing training scores is used to get insights on how different
|
||
|
parameter settings impact the overfitting/underfitting trade-off.
|
||
|
However computing the scores on the training set can be computationally
|
||
|
expensive and is not strictly required to select the parameters that
|
||
|
yield the best generalization performance.
|
||
|
|
||
|
.. versionadded:: 0.19
|
||
|
|
||
|
.. versionchanged:: 0.21
|
||
|
Default value was changed from ``True`` to ``False``
|
||
|
|
||
|
return_estimator : bool, default=False
|
||
|
Whether to return the estimators fitted on each split.
|
||
|
|
||
|
.. versionadded:: 0.20
|
||
|
|
||
|
error_score : 'raise' or numeric
|
||
|
Value to assign to the score if an error occurs in estimator fitting.
|
||
|
If set to 'raise', the error is raised.
|
||
|
If a numeric value is given, FitFailedWarning is raised. This parameter
|
||
|
does not affect the refit step, which will always raise the error.
|
||
|
|
||
|
.. versionadded:: 0.20
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scores : dict of float arrays of shape (n_splits,)
|
||
|
Array of scores of the estimator for each run of the cross validation.
|
||
|
|
||
|
A dict of arrays containing the score/time arrays for each scorer is
|
||
|
returned. The possible keys for this ``dict`` are:
|
||
|
|
||
|
``test_score``
|
||
|
The score array for test scores on each cv split.
|
||
|
Suffix ``_score`` in ``test_score`` changes to a specific
|
||
|
metric like ``test_r2`` or ``test_auc`` if there are
|
||
|
multiple scoring metrics in the scoring parameter.
|
||
|
``train_score``
|
||
|
The score array for train scores on each cv split.
|
||
|
Suffix ``_score`` in ``train_score`` changes to a specific
|
||
|
metric like ``train_r2`` or ``train_auc`` if there are
|
||
|
multiple scoring metrics in the scoring parameter.
|
||
|
This is available only if ``return_train_score`` parameter
|
||
|
is ``True``.
|
||
|
``fit_time``
|
||
|
The time for fitting the estimator on the train
|
||
|
set for each cv split.
|
||
|
``score_time``
|
||
|
The time for scoring the estimator on the test set for each
|
||
|
cv split. (Note time for scoring on the train set is not
|
||
|
included even if ``return_train_score`` is set to ``True``
|
||
|
``estimator``
|
||
|
The estimator objects for each cv split.
|
||
|
This is available only if ``return_estimator`` parameter
|
||
|
is set to ``True``.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from sklearn import datasets, linear_model
|
||
|
>>> from sklearn.model_selection import cross_validate
|
||
|
>>> from sklearn.metrics import make_scorer
|
||
|
>>> from sklearn.metrics import confusion_matrix
|
||
|
>>> from sklearn.svm import LinearSVC
|
||
|
>>> diabetes = datasets.load_diabetes()
|
||
|
>>> X = diabetes.data[:150]
|
||
|
>>> y = diabetes.target[:150]
|
||
|
>>> lasso = linear_model.Lasso()
|
||
|
|
||
|
Single metric evaluation using ``cross_validate``
|
||
|
|
||
|
>>> cv_results = cross_validate(lasso, X, y, cv=3)
|
||
|
>>> sorted(cv_results.keys())
|
||
|
['fit_time', 'score_time', 'test_score']
|
||
|
>>> cv_results['test_score']
|
||
|
array([0.33150734, 0.08022311, 0.03531764])
|
||
|
|
||
|
Multiple metric evaluation using ``cross_validate``
|
||
|
(please refer the ``scoring`` parameter doc for more information)
|
||
|
|
||
|
>>> scores = cross_validate(lasso, X, y, cv=3,
|
||
|
... scoring=('r2', 'neg_mean_squared_error'),
|
||
|
... return_train_score=True)
|
||
|
>>> print(scores['test_neg_mean_squared_error'])
|
||
|
[-3635.5... -3573.3... -6114.7...]
|
||
|
>>> print(scores['train_r2'])
|
||
|
[0.28010158 0.39088426 0.22784852]
|
||
|
|
||
|
See Also
|
||
|
---------
|
||
|
:func:`sklearn.model_selection.cross_val_score`:
|
||
|
Run cross-validation for single metric evaluation.
|
||
|
|
||
|
:func:`sklearn.model_selection.cross_val_predict`:
|
||
|
Get predictions from each split of cross-validation for diagnostic
|
||
|
purposes.
|
||
|
|
||
|
:func:`sklearn.metrics.make_scorer`:
|
||
|
Make a scorer from a performance metric or loss function.
|
||
|
|
||
|
"""
|
||
|
X, y, groups = indexable(X, y, groups)
|
||
|
|
||
|
cv = check_cv(cv, y, classifier=is_classifier(estimator))
|
||
|
scorers, _ = _check_multimetric_scoring(estimator, scoring=scoring)
|
||
|
|
||
|
# We clone the estimator to make sure that all the folds are
|
||
|
# independent, and that it is pickle-able.
|
||
|
parallel = Parallel(n_jobs=n_jobs, verbose=verbose,
|
||
|
pre_dispatch=pre_dispatch)
|
||
|
scores = parallel(
|
||
|
delayed(_fit_and_score)(
|
||
|
clone(estimator), X, y, scorers, train, test, verbose, None,
|
||
|
fit_params, return_train_score=return_train_score,
|
||
|
return_times=True, return_estimator=return_estimator,
|
||
|
error_score=error_score)
|
||
|
for train, test in cv.split(X, y, groups))
|
||
|
|
||
|
zipped_scores = list(zip(*scores))
|
||
|
if return_train_score:
|
||
|
train_scores = zipped_scores.pop(0)
|
||
|
train_scores = _aggregate_score_dicts(train_scores)
|
||
|
if return_estimator:
|
||
|
fitted_estimators = zipped_scores.pop()
|
||
|
test_scores, fit_times, score_times = zipped_scores
|
||
|
test_scores = _aggregate_score_dicts(test_scores)
|
||
|
|
||
|
ret = {}
|
||
|
ret['fit_time'] = np.array(fit_times)
|
||
|
ret['score_time'] = np.array(score_times)
|
||
|
|
||
|
if return_estimator:
|
||
|
ret['estimator'] = fitted_estimators
|
||
|
|
||
|
for name in scorers:
|
||
|
ret['test_%s' % name] = np.array(test_scores[name])
|
||
|
if return_train_score:
|
||
|
key = 'train_%s' % name
|
||
|
ret[key] = np.array(train_scores[name])
|
||
|
|
||
|
return ret
|
||
|
|
||
|
|
||
|
@_deprecate_positional_args
|
||
|
def cross_val_score(estimator, X, y=None, *, groups=None, scoring=None,
|
||
|
cv=None, n_jobs=None, verbose=0, fit_params=None,
|
||
|
pre_dispatch='2*n_jobs', error_score=np.nan):
|
||
|
"""Evaluate a score by cross-validation
|
||
|
|
||
|
Read more in the :ref:`User Guide <cross_validation>`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
estimator : estimator object implementing 'fit'
|
||
|
The object to use to fit the data.
|
||
|
|
||
|
X : array-like of shape (n_samples, n_features)
|
||
|
The data to fit. Can be for example a list, or an array.
|
||
|
|
||
|
y : array-like of shape (n_samples,) or (n_samples, n_outputs), \
|
||
|
default=None
|
||
|
The target variable to try to predict in the case of
|
||
|
supervised learning.
|
||
|
|
||
|
groups : array-like of shape (n_samples,), default=None
|
||
|
Group labels for the samples used while splitting the dataset into
|
||
|
train/test set. Only used in conjunction with a "Group" :term:`cv`
|
||
|
instance (e.g., :class:`GroupKFold`).
|
||
|
|
||
|
scoring : str or callable, default=None
|
||
|
A str (see model evaluation documentation) or
|
||
|
a scorer callable object / function with signature
|
||
|
``scorer(estimator, X, y)`` which should return only
|
||
|
a single value.
|
||
|
|
||
|
Similar to :func:`cross_validate`
|
||
|
but only a single metric is permitted.
|
||
|
|
||
|
If None, the estimator's default scorer (if available) is used.
|
||
|
|
||
|
cv : int, cross-validation generator or an iterable, default=None
|
||
|
Determines the cross-validation splitting strategy.
|
||
|
Possible inputs for cv are:
|
||
|
|
||
|
- None, to use the default 5-fold cross validation,
|
||
|
- int, to specify the number of folds in a `(Stratified)KFold`,
|
||
|
- :term:`CV splitter`,
|
||
|
- An iterable yielding (train, test) splits as arrays of indices.
|
||
|
|
||
|
For int/None inputs, if the estimator is a classifier and ``y`` is
|
||
|
either binary or multiclass, :class:`StratifiedKFold` is used. In all
|
||
|
other cases, :class:`KFold` is used.
|
||
|
|
||
|
Refer :ref:`User Guide <cross_validation>` for the various
|
||
|
cross-validation strategies that can be used here.
|
||
|
|
||
|
.. versionchanged:: 0.22
|
||
|
``cv`` default value if None changed from 3-fold to 5-fold.
|
||
|
|
||
|
n_jobs : int, default=None
|
||
|
The number of CPUs to use to do the computation.
|
||
|
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
||
|
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
||
|
for more details.
|
||
|
|
||
|
verbose : int, default=0
|
||
|
The verbosity level.
|
||
|
|
||
|
fit_params : dict, default=None
|
||
|
Parameters to pass to the fit method of the estimator.
|
||
|
|
||
|
pre_dispatch : int or str, default='2*n_jobs'
|
||
|
Controls the number of jobs that get dispatched during parallel
|
||
|
execution. Reducing this number can be useful to avoid an
|
||
|
explosion of memory consumption when more jobs get dispatched
|
||
|
than CPUs can process. This parameter can be:
|
||
|
|
||
|
- None, in which case all the jobs are immediately
|
||
|
created and spawned. Use this for lightweight and
|
||
|
fast-running jobs, to avoid delays due to on-demand
|
||
|
spawning of the jobs
|
||
|
|
||
|
- An int, giving the exact number of total jobs that are
|
||
|
spawned
|
||
|
|
||
|
- A str, giving an expression as a function of n_jobs,
|
||
|
as in '2*n_jobs'
|
||
|
|
||
|
error_score : 'raise' or numeric, default=np.nan
|
||
|
Value to assign to the score if an error occurs in estimator fitting.
|
||
|
If set to 'raise', the error is raised.
|
||
|
If a numeric value is given, FitFailedWarning is raised. This parameter
|
||
|
does not affect the refit step, which will always raise the error.
|
||
|
|
||
|
.. versionadded:: 0.20
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scores : array of float, shape=(len(list(cv)),)
|
||
|
Array of scores of the estimator for each run of the cross validation.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from sklearn import datasets, linear_model
|
||
|
>>> from sklearn.model_selection import cross_val_score
|
||
|
>>> diabetes = datasets.load_diabetes()
|
||
|
>>> X = diabetes.data[:150]
|
||
|
>>> y = diabetes.target[:150]
|
||
|
>>> lasso = linear_model.Lasso()
|
||
|
>>> print(cross_val_score(lasso, X, y, cv=3))
|
||
|
[0.33150734 0.08022311 0.03531764]
|
||
|
|
||
|
See Also
|
||
|
---------
|
||
|
:func:`sklearn.model_selection.cross_validate`:
|
||
|
To run cross-validation on multiple metrics and also to return
|
||
|
train scores, fit times and score times.
|
||
|
|
||
|
:func:`sklearn.model_selection.cross_val_predict`:
|
||
|
Get predictions from each split of cross-validation for diagnostic
|
||
|
purposes.
|
||
|
|
||
|
:func:`sklearn.metrics.make_scorer`:
|
||
|
Make a scorer from a performance metric or loss function.
|
||
|
|
||
|
"""
|
||
|
# To ensure multimetric format is not supported
|
||
|
scorer = check_scoring(estimator, scoring=scoring)
|
||
|
|
||
|
cv_results = cross_validate(estimator=estimator, X=X, y=y, groups=groups,
|
||
|
scoring={'score': scorer}, cv=cv,
|
||
|
n_jobs=n_jobs, verbose=verbose,
|
||
|
fit_params=fit_params,
|
||
|
pre_dispatch=pre_dispatch,
|
||
|
error_score=error_score)
|
||
|
return cv_results['test_score']
|
||
|
|
||
|
|
||
|
def _fit_and_score(estimator, X, y, scorer, train, test, verbose,
|
||
|
parameters, fit_params, return_train_score=False,
|
||
|
return_parameters=False, return_n_test_samples=False,
|
||
|
return_times=False, return_estimator=False,
|
||
|
error_score=np.nan):
|
||
|
"""Fit estimator and compute scores for a given dataset split.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
estimator : estimator object implementing 'fit'
|
||
|
The object to use to fit the data.
|
||
|
|
||
|
X : array-like of shape (n_samples, n_features)
|
||
|
The data to fit.
|
||
|
|
||
|
y : array-like of shape (n_samples,) or (n_samples, n_outputs) or None
|
||
|
The target variable to try to predict in the case of
|
||
|
supervised learning.
|
||
|
|
||
|
scorer : A single callable or dict mapping scorer name to the callable
|
||
|
If it is a single callable, the return value for ``train_scores`` and
|
||
|
``test_scores`` is a single float.
|
||
|
|
||
|
For a dict, it should be one mapping the scorer name to the scorer
|
||
|
callable object / function.
|
||
|
|
||
|
The callable object / fn should have signature
|
||
|
``scorer(estimator, X, y)``.
|
||
|
|
||
|
train : array-like of shape (n_train_samples,)
|
||
|
Indices of training samples.
|
||
|
|
||
|
test : array-like of shape (n_test_samples,)
|
||
|
Indices of test samples.
|
||
|
|
||
|
verbose : int
|
||
|
The verbosity level.
|
||
|
|
||
|
error_score : 'raise' or numeric, default=np.nan
|
||
|
Value to assign to the score if an error occurs in estimator fitting.
|
||
|
If set to 'raise', the error is raised.
|
||
|
If a numeric value is given, FitFailedWarning is raised. This parameter
|
||
|
does not affect the refit step, which will always raise the error.
|
||
|
|
||
|
parameters : dict or None
|
||
|
Parameters to be set on the estimator.
|
||
|
|
||
|
fit_params : dict or None
|
||
|
Parameters that will be passed to ``estimator.fit``.
|
||
|
|
||
|
return_train_score : bool, default=False
|
||
|
Compute and return score on training set.
|
||
|
|
||
|
return_parameters : bool, default=False
|
||
|
Return parameters that has been used for the estimator.
|
||
|
|
||
|
return_n_test_samples : bool, default=False
|
||
|
Whether to return the ``n_test_samples``
|
||
|
|
||
|
return_times : bool, default=False
|
||
|
Whether to return the fit/score times.
|
||
|
|
||
|
return_estimator : bool, default=False
|
||
|
Whether to return the fitted estimator.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
train_scores : dict of scorer name -> float
|
||
|
Score on training set (for all the scorers),
|
||
|
returned only if `return_train_score` is `True`.
|
||
|
|
||
|
test_scores : dict of scorer name -> float
|
||
|
Score on testing set (for all the scorers).
|
||
|
|
||
|
n_test_samples : int
|
||
|
Number of test samples.
|
||
|
|
||
|
fit_time : float
|
||
|
Time spent for fitting in seconds.
|
||
|
|
||
|
score_time : float
|
||
|
Time spent for scoring in seconds.
|
||
|
|
||
|
parameters : dict or None
|
||
|
The parameters that have been evaluated.
|
||
|
|
||
|
estimator : estimator object
|
||
|
The fitted estimator
|
||
|
"""
|
||
|
if verbose > 1:
|
||
|
if parameters is None:
|
||
|
msg = ''
|
||
|
else:
|
||
|
msg = '%s' % (', '.join('%s=%s' % (k, v)
|
||
|
for k, v in parameters.items()))
|
||
|
print("[CV] %s %s" % (msg, (64 - len(msg)) * '.'))
|
||
|
|
||
|
# Adjust length of sample weights
|
||
|
fit_params = fit_params if fit_params is not None else {}
|
||
|
fit_params = _check_fit_params(X, fit_params, train)
|
||
|
|
||
|
train_scores = {}
|
||
|
if parameters is not None:
|
||
|
# clone after setting parameters in case any parameters
|
||
|
# are estimators (like pipeline steps)
|
||
|
# because pipeline doesn't clone steps in fit
|
||
|
cloned_parameters = {}
|
||
|
for k, v in parameters.items():
|
||
|
cloned_parameters[k] = clone(v, safe=False)
|
||
|
|
||
|
estimator = estimator.set_params(**cloned_parameters)
|
||
|
|
||
|
start_time = time.time()
|
||
|
|
||
|
X_train, y_train = _safe_split(estimator, X, y, train)
|
||
|
X_test, y_test = _safe_split(estimator, X, y, test, train)
|
||
|
|
||
|
try:
|
||
|
if y_train is None:
|
||
|
estimator.fit(X_train, **fit_params)
|
||
|
else:
|
||
|
estimator.fit(X_train, y_train, **fit_params)
|
||
|
|
||
|
except Exception as e:
|
||
|
# Note fit time as time until error
|
||
|
fit_time = time.time() - start_time
|
||
|
score_time = 0.0
|
||
|
if error_score == 'raise':
|
||
|
raise
|
||
|
elif isinstance(error_score, numbers.Number):
|
||
|
if isinstance(scorer, dict):
|
||
|
test_scores = {name: error_score for name in scorer}
|
||
|
if return_train_score:
|
||
|
train_scores = test_scores.copy()
|
||
|
else:
|
||
|
test_scores = error_score
|
||
|
if return_train_score:
|
||
|
train_scores = error_score
|
||
|
warnings.warn("Estimator fit failed. The score on this train-test"
|
||
|
" partition for these parameters will be set to %f. "
|
||
|
"Details: \n%s" %
|
||
|
(error_score, format_exc()),
|
||
|
FitFailedWarning)
|
||
|
else:
|
||
|
raise ValueError("error_score must be the string 'raise' or a"
|
||
|
" numeric value. (Hint: if using 'raise', please"
|
||
|
" make sure that it has been spelled correctly.)")
|
||
|
|
||
|
else:
|
||
|
fit_time = time.time() - start_time
|
||
|
test_scores = _score(estimator, X_test, y_test, scorer)
|
||
|
score_time = time.time() - start_time - fit_time
|
||
|
if return_train_score:
|
||
|
train_scores = _score(estimator, X_train, y_train, scorer)
|
||
|
if verbose > 2:
|
||
|
if isinstance(test_scores, dict):
|
||
|
for scorer_name in sorted(test_scores):
|
||
|
msg += ", %s=" % scorer_name
|
||
|
if return_train_score:
|
||
|
msg += "(train=%.3f," % train_scores[scorer_name]
|
||
|
msg += " test=%.3f)" % test_scores[scorer_name]
|
||
|
else:
|
||
|
msg += "%.3f" % test_scores[scorer_name]
|
||
|
else:
|
||
|
msg += ", score="
|
||
|
msg += ("%.3f" % test_scores if not return_train_score else
|
||
|
"(train=%.3f, test=%.3f)" % (train_scores, test_scores))
|
||
|
|
||
|
if verbose > 1:
|
||
|
total_time = score_time + fit_time
|
||
|
print(_message_with_time('CV', msg, total_time))
|
||
|
|
||
|
ret = [train_scores, test_scores] if return_train_score else [test_scores]
|
||
|
|
||
|
if return_n_test_samples:
|
||
|
ret.append(_num_samples(X_test))
|
||
|
if return_times:
|
||
|
ret.extend([fit_time, score_time])
|
||
|
if return_parameters:
|
||
|
ret.append(parameters)
|
||
|
if return_estimator:
|
||
|
ret.append(estimator)
|
||
|
return ret
|
||
|
|
||
|
|
||
|
def _score(estimator, X_test, y_test, scorer):
|
||
|
"""Compute the score(s) of an estimator on a given test set.
|
||
|
|
||
|
Will return a dict of floats if `scorer` is a dict, otherwise a single
|
||
|
float is returned.
|
||
|
"""
|
||
|
if isinstance(scorer, dict):
|
||
|
# will cache method calls if needed. scorer() returns a dict
|
||
|
scorer = _MultimetricScorer(**scorer)
|
||
|
if y_test is None:
|
||
|
scores = scorer(estimator, X_test)
|
||
|
else:
|
||
|
scores = scorer(estimator, X_test, y_test)
|
||
|
|
||
|
error_msg = ("scoring must return a number, got %s (%s) "
|
||
|
"instead. (scorer=%s)")
|
||
|
if isinstance(scores, dict):
|
||
|
for name, score in scores.items():
|
||
|
if hasattr(score, 'item'):
|
||
|
with suppress(ValueError):
|
||
|
# e.g. unwrap memmapped scalars
|
||
|
score = score.item()
|
||
|
if not isinstance(score, numbers.Number):
|
||
|
raise ValueError(error_msg % (score, type(score), name))
|
||
|
scores[name] = score
|
||
|
else: # scalar
|
||
|
if hasattr(scores, 'item'):
|
||
|
with suppress(ValueError):
|
||
|
# e.g. unwrap memmapped scalars
|
||
|
scores = scores.item()
|
||
|
if not isinstance(scores, numbers.Number):
|
||
|
raise ValueError(error_msg % (scores, type(scores), scorer))
|
||
|
return scores
|
||
|
|
||
|
|
||
|
@_deprecate_positional_args
|
||
|
def cross_val_predict(estimator, X, y=None, *, groups=None, cv=None,
|
||
|
n_jobs=None, verbose=0, fit_params=None,
|
||
|
pre_dispatch='2*n_jobs', method='predict'):
|
||
|
"""Generate cross-validated estimates for each input data point
|
||
|
|
||
|
The data is split according to the cv parameter. Each sample belongs
|
||
|
to exactly one test set, and its prediction is computed with an
|
||
|
estimator fitted on the corresponding training set.
|
||
|
|
||
|
Passing these predictions into an evaluation metric may not be a valid
|
||
|
way to measure generalization performance. Results can differ from
|
||
|
:func:`cross_validate` and :func:`cross_val_score` unless all tests sets
|
||
|
have equal size and the metric decomposes over samples.
|
||
|
|
||
|
Read more in the :ref:`User Guide <cross_validation>`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
estimator : estimator object implementing 'fit' and 'predict'
|
||
|
The object to use to fit the data.
|
||
|
|
||
|
X : array-like of shape (n_samples, n_features)
|
||
|
The data to fit. Can be, for example a list, or an array at least 2d.
|
||
|
|
||
|
y : array-like of shape (n_samples,) or (n_samples, n_outputs), \
|
||
|
default=None
|
||
|
The target variable to try to predict in the case of
|
||
|
supervised learning.
|
||
|
|
||
|
groups : array-like of shape (n_samples,), default=None
|
||
|
Group labels for the samples used while splitting the dataset into
|
||
|
train/test set. Only used in conjunction with a "Group" :term:`cv`
|
||
|
instance (e.g., :class:`GroupKFold`).
|
||
|
|
||
|
cv : int, cross-validation generator or an iterable, default=None
|
||
|
Determines the cross-validation splitting strategy.
|
||
|
Possible inputs for cv are:
|
||
|
|
||
|
- None, to use the default 5-fold cross validation,
|
||
|
- int, to specify the number of folds in a `(Stratified)KFold`,
|
||
|
- :term:`CV splitter`,
|
||
|
- An iterable yielding (train, test) splits as arrays of indices.
|
||
|
|
||
|
For int/None inputs, if the estimator is a classifier and ``y`` is
|
||
|
either binary or multiclass, :class:`StratifiedKFold` is used. In all
|
||
|
other cases, :class:`KFold` is used.
|
||
|
|
||
|
Refer :ref:`User Guide <cross_validation>` for the various
|
||
|
cross-validation strategies that can be used here.
|
||
|
|
||
|
.. versionchanged:: 0.22
|
||
|
``cv`` default value if None changed from 3-fold to 5-fold.
|
||
|
|
||
|
n_jobs : int, default=None
|
||
|
The number of CPUs to use to do the computation.
|
||
|
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
||
|
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
||
|
for more details.
|
||
|
|
||
|
verbose : int, default=0
|
||
|
The verbosity level.
|
||
|
|
||
|
fit_params : dict, defualt=None
|
||
|
Parameters to pass to the fit method of the estimator.
|
||
|
|
||
|
pre_dispatch : int or str, default='2*n_jobs'
|
||
|
Controls the number of jobs that get dispatched during parallel
|
||
|
execution. Reducing this number can be useful to avoid an
|
||
|
explosion of memory consumption when more jobs get dispatched
|
||
|
than CPUs can process. This parameter can be:
|
||
|
|
||
|
- None, in which case all the jobs are immediately
|
||
|
created and spawned. Use this for lightweight and
|
||
|
fast-running jobs, to avoid delays due to on-demand
|
||
|
spawning of the jobs
|
||
|
|
||
|
- An int, giving the exact number of total jobs that are
|
||
|
spawned
|
||
|
|
||
|
- A str, giving an expression as a function of n_jobs,
|
||
|
as in '2*n_jobs'
|
||
|
|
||
|
method : str, default='predict'
|
||
|
Invokes the passed method name of the passed estimator. For
|
||
|
method='predict_proba', the columns correspond to the classes
|
||
|
in sorted order.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
predictions : ndarray
|
||
|
This is the result of calling ``method``
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
cross_val_score : calculate score for each CV split
|
||
|
|
||
|
cross_validate : calculate one or more scores and timings for each CV split
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
In the case that one or more classes are absent in a training portion, a
|
||
|
default score needs to be assigned to all instances for that class if
|
||
|
``method`` produces columns per class, as in {'decision_function',
|
||
|
'predict_proba', 'predict_log_proba'}. For ``predict_proba`` this value is
|
||
|
0. In order to ensure finite output, we approximate negative infinity by
|
||
|
the minimum finite float value for the dtype in other cases.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from sklearn import datasets, linear_model
|
||
|
>>> from sklearn.model_selection import cross_val_predict
|
||
|
>>> diabetes = datasets.load_diabetes()
|
||
|
>>> X = diabetes.data[:150]
|
||
|
>>> y = diabetes.target[:150]
|
||
|
>>> lasso = linear_model.Lasso()
|
||
|
>>> y_pred = cross_val_predict(lasso, X, y, cv=3)
|
||
|
"""
|
||
|
X, y, groups = indexable(X, y, groups)
|
||
|
|
||
|
cv = check_cv(cv, y, classifier=is_classifier(estimator))
|
||
|
|
||
|
# If classification methods produce multiple columns of output,
|
||
|
# we need to manually encode classes to ensure consistent column ordering.
|
||
|
encode = method in ['decision_function', 'predict_proba',
|
||
|
'predict_log_proba'] and y is not None
|
||
|
if encode:
|
||
|
y = np.asarray(y)
|
||
|
if y.ndim == 1:
|
||
|
le = LabelEncoder()
|
||
|
y = le.fit_transform(y)
|
||
|
elif y.ndim == 2:
|
||
|
y_enc = np.zeros_like(y, dtype=np.int)
|
||
|
for i_label in range(y.shape[1]):
|
||
|
y_enc[:, i_label] = LabelEncoder().fit_transform(y[:, i_label])
|
||
|
y = y_enc
|
||
|
|
||
|
# We clone the estimator to make sure that all the folds are
|
||
|
# independent, and that it is pickle-able.
|
||
|
parallel = Parallel(n_jobs=n_jobs, verbose=verbose,
|
||
|
pre_dispatch=pre_dispatch)
|
||
|
prediction_blocks = parallel(delayed(_fit_and_predict)(
|
||
|
clone(estimator), X, y, train, test, verbose, fit_params, method)
|
||
|
for train, test in cv.split(X, y, groups))
|
||
|
|
||
|
# Concatenate the predictions
|
||
|
predictions = [pred_block_i for pred_block_i, _ in prediction_blocks]
|
||
|
test_indices = np.concatenate([indices_i
|
||
|
for _, indices_i in prediction_blocks])
|
||
|
|
||
|
if not _check_is_permutation(test_indices, _num_samples(X)):
|
||
|
raise ValueError('cross_val_predict only works for partitions')
|
||
|
|
||
|
inv_test_indices = np.empty(len(test_indices), dtype=int)
|
||
|
inv_test_indices[test_indices] = np.arange(len(test_indices))
|
||
|
|
||
|
if sp.issparse(predictions[0]):
|
||
|
predictions = sp.vstack(predictions, format=predictions[0].format)
|
||
|
elif encode and isinstance(predictions[0], list):
|
||
|
# `predictions` is a list of method outputs from each fold.
|
||
|
# If each of those is also a list, then treat this as a
|
||
|
# multioutput-multiclass task. We need to separately concatenate
|
||
|
# the method outputs for each label into an `n_labels` long list.
|
||
|
n_labels = y.shape[1]
|
||
|
concat_pred = []
|
||
|
for i_label in range(n_labels):
|
||
|
label_preds = np.concatenate([p[i_label] for p in predictions])
|
||
|
concat_pred.append(label_preds)
|
||
|
predictions = concat_pred
|
||
|
else:
|
||
|
predictions = np.concatenate(predictions)
|
||
|
|
||
|
if isinstance(predictions, list):
|
||
|
return [p[inv_test_indices] for p in predictions]
|
||
|
else:
|
||
|
return predictions[inv_test_indices]
|
||
|
|
||
|
|
||
|
def _fit_and_predict(estimator, X, y, train, test, verbose, fit_params,
|
||
|
method):
|
||
|
"""Fit estimator and predict values for a given dataset split.
|
||
|
|
||
|
Read more in the :ref:`User Guide <cross_validation>`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
estimator : estimator object implementing 'fit' and 'predict'
|
||
|
The object to use to fit the data.
|
||
|
|
||
|
X : array-like of shape (n_samples, n_features)
|
||
|
The data to fit.
|
||
|
|
||
|
.. versionchanged:: 0.20
|
||
|
X is only required to be an object with finite length or shape now
|
||
|
|
||
|
y : array-like of shape (n_samples,) or (n_samples, n_outputs) or None
|
||
|
The target variable to try to predict in the case of
|
||
|
supervised learning.
|
||
|
|
||
|
train : array-like of shape (n_train_samples,)
|
||
|
Indices of training samples.
|
||
|
|
||
|
test : array-like of shape (n_test_samples,)
|
||
|
Indices of test samples.
|
||
|
|
||
|
verbose : int
|
||
|
The verbosity level.
|
||
|
|
||
|
fit_params : dict or None
|
||
|
Parameters that will be passed to ``estimator.fit``.
|
||
|
|
||
|
method : str
|
||
|
Invokes the passed method name of the passed estimator.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
predictions : sequence
|
||
|
Result of calling 'estimator.method'
|
||
|
|
||
|
test : array-like
|
||
|
This is the value of the test parameter
|
||
|
"""
|
||
|
# Adjust length of sample weights
|
||
|
fit_params = fit_params if fit_params is not None else {}
|
||
|
fit_params = _check_fit_params(X, fit_params, train)
|
||
|
|
||
|
X_train, y_train = _safe_split(estimator, X, y, train)
|
||
|
X_test, _ = _safe_split(estimator, X, y, test, train)
|
||
|
|
||
|
if y_train is None:
|
||
|
estimator.fit(X_train, **fit_params)
|
||
|
else:
|
||
|
estimator.fit(X_train, y_train, **fit_params)
|
||
|
func = getattr(estimator, method)
|
||
|
predictions = func(X_test)
|
||
|
|
||
|
encode = method in ['decision_function', 'predict_proba',
|
||
|
'predict_log_proba'] and y is not None
|
||
|
|
||
|
if encode:
|
||
|
if isinstance(predictions, list):
|
||
|
predictions = [_enforce_prediction_order(
|
||
|
estimator.classes_[i_label], predictions[i_label],
|
||
|
n_classes=len(set(y[:, i_label])), method=method)
|
||
|
for i_label in range(len(predictions))]
|
||
|
else:
|
||
|
# A 2D y array should be a binary label indicator matrix
|
||
|
n_classes = len(set(y)) if y.ndim == 1 else y.shape[1]
|
||
|
predictions = _enforce_prediction_order(
|
||
|
estimator.classes_, predictions, n_classes, method)
|
||
|
return predictions, test
|
||
|
|
||
|
|
||
|
def _enforce_prediction_order(classes, predictions, n_classes, method):
|
||
|
"""Ensure that prediction arrays have correct column order
|
||
|
|
||
|
When doing cross-validation, if one or more classes are
|
||
|
not present in the subset of data used for training,
|
||
|
then the output prediction array might not have the same
|
||
|
columns as other folds. Use the list of class names
|
||
|
(assumed to be ints) to enforce the correct column order.
|
||
|
|
||
|
Note that `classes` is the list of classes in this fold
|
||
|
(a subset of the classes in the full training set)
|
||
|
and `n_classes` is the number of classes in the full training set.
|
||
|
"""
|
||
|
if n_classes != len(classes):
|
||
|
recommendation = (
|
||
|
'To fix this, use a cross-validation '
|
||
|
'technique resulting in properly '
|
||
|
'stratified folds')
|
||
|
warnings.warn('Number of classes in training fold ({}) does '
|
||
|
'not match total number of classes ({}). '
|
||
|
'Results may not be appropriate for your use case. '
|
||
|
'{}'.format(len(classes), n_classes, recommendation),
|
||
|
RuntimeWarning)
|
||
|
if method == 'decision_function':
|
||
|
if (predictions.ndim == 2 and
|
||
|
predictions.shape[1] != len(classes)):
|
||
|
# This handles the case when the shape of predictions
|
||
|
# does not match the number of classes used to train
|
||
|
# it with. This case is found when sklearn.svm.SVC is
|
||
|
# set to `decision_function_shape='ovo'`.
|
||
|
raise ValueError('Output shape {} of {} does not match '
|
||
|
'number of classes ({}) in fold. '
|
||
|
'Irregular decision_function outputs '
|
||
|
'are not currently supported by '
|
||
|
'cross_val_predict'.format(
|
||
|
predictions.shape, method, len(classes)))
|
||
|
if len(classes) <= 2:
|
||
|
# In this special case, `predictions` contains a 1D array.
|
||
|
raise ValueError('Only {} class/es in training fold, but {} '
|
||
|
'in overall dataset. This '
|
||
|
'is not supported for decision_function '
|
||
|
'with imbalanced folds. {}'.format(
|
||
|
len(classes), n_classes, recommendation))
|
||
|
|
||
|
float_min = np.finfo(predictions.dtype).min
|
||
|
default_values = {'decision_function': float_min,
|
||
|
'predict_log_proba': float_min,
|
||
|
'predict_proba': 0}
|
||
|
predictions_for_all_classes = np.full((_num_samples(predictions),
|
||
|
n_classes),
|
||
|
default_values[method],
|
||
|
dtype=predictions.dtype)
|
||
|
predictions_for_all_classes[:, classes] = predictions
|
||
|
predictions = predictions_for_all_classes
|
||
|
return predictions
|
||
|
|
||
|
|
||
|
def _check_is_permutation(indices, n_samples):
|
||
|
"""Check whether indices is a reordering of the array np.arange(n_samples)
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
indices : ndarray
|
||
|
int array to test
|
||
|
n_samples : int
|
||
|
number of expected elements
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
is_partition : bool
|
||
|
True iff sorted(indices) is np.arange(n)
|
||
|
"""
|
||
|
if len(indices) != n_samples:
|
||
|
return False
|
||
|
hit = np.zeros(n_samples, dtype=bool)
|
||
|
hit[indices] = True
|
||
|
if not np.all(hit):
|
||
|
return False
|
||
|
return True
|
||
|
|
||
|
|
||
|
@_deprecate_positional_args
|
||
|
def permutation_test_score(estimator, X, y, *, groups=None, cv=None,
|
||
|
n_permutations=100, n_jobs=None, random_state=0,
|
||
|
verbose=0, scoring=None):
|
||
|
"""Evaluate the significance of a cross-validated score with permutations
|
||
|
|
||
|
Read more in the :ref:`User Guide <cross_validation>`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
estimator : estimator object implementing 'fit'
|
||
|
The object to use to fit the data.
|
||
|
|
||
|
X : array-like of shape at least 2D
|
||
|
The data to fit.
|
||
|
|
||
|
y : array-like of shape (n_samples,) or (n_samples, n_outputs) or None
|
||
|
The target variable to try to predict in the case of
|
||
|
supervised learning.
|
||
|
|
||
|
groups : array-like of shape (n_samples,), default=None
|
||
|
Labels to constrain permutation within groups, i.e. ``y`` values
|
||
|
are permuted among samples with the same group identifier.
|
||
|
When not specified, ``y`` values are permuted among all samples.
|
||
|
|
||
|
When a grouped cross-validator is used, the group labels are
|
||
|
also passed on to the ``split`` method of the cross-validator. The
|
||
|
cross-validator uses them for grouping the samples while splitting
|
||
|
the dataset into train/test set.
|
||
|
|
||
|
scoring : str or callable, default=None
|
||
|
A single str (see :ref:`scoring_parameter`) or a callable
|
||
|
(see :ref:`scoring`) to evaluate the predictions on the test set.
|
||
|
|
||
|
If None the estimator's score method is used.
|
||
|
|
||
|
cv : int, cross-validation generator or an iterable, default=None
|
||
|
Determines the cross-validation splitting strategy.
|
||
|
Possible inputs for cv are:
|
||
|
|
||
|
- None, to use the default 5-fold cross validation,
|
||
|
- int, to specify the number of folds in a `(Stratified)KFold`,
|
||
|
- :term:`CV splitter`,
|
||
|
- An iterable yielding (train, test) splits as arrays of indices.
|
||
|
|
||
|
For int/None inputs, if the estimator is a classifier and ``y`` is
|
||
|
either binary or multiclass, :class:`StratifiedKFold` is used. In all
|
||
|
other cases, :class:`KFold` is used.
|
||
|
|
||
|
Refer :ref:`User Guide <cross_validation>` for the various
|
||
|
cross-validation strategies that can be used here.
|
||
|
|
||
|
.. versionchanged:: 0.22
|
||
|
``cv`` default value if None changed from 3-fold to 5-fold.
|
||
|
|
||
|
n_permutations : int, default=100
|
||
|
Number of times to permute ``y``.
|
||
|
|
||
|
n_jobs : int, default=None
|
||
|
The number of CPUs to use to do the computation.
|
||
|
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
||
|
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
||
|
for more details.
|
||
|
|
||
|
random_state : int, RandomState instance or None, default=0
|
||
|
Pass an int for reproducible output for permutation of
|
||
|
``y`` values among samples. See :term:`Glossary <random_state>`.
|
||
|
|
||
|
verbose : int, default=0
|
||
|
The verbosity level.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
score : float
|
||
|
The true score without permuting targets.
|
||
|
|
||
|
permutation_scores : array of shape (n_permutations,)
|
||
|
The scores obtained for each permutations.
|
||
|
|
||
|
pvalue : float
|
||
|
The p-value, which approximates the probability that the score would
|
||
|
be obtained by chance. This is calculated as:
|
||
|
|
||
|
`(C + 1) / (n_permutations + 1)`
|
||
|
|
||
|
Where C is the number of permutations whose score >= the true score.
|
||
|
|
||
|
The best possible p-value is 1/(n_permutations + 1), the worst is 1.0.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This function implements Test 1 in:
|
||
|
|
||
|
Ojala and Garriga. Permutation Tests for Studying Classifier
|
||
|
Performance. The Journal of Machine Learning Research (2010)
|
||
|
vol. 11
|
||
|
`[pdf] <http://www.jmlr.org/papers/volume11/ojala10a/ojala10a.pdf>`_.
|
||
|
|
||
|
"""
|
||
|
X, y, groups = indexable(X, y, groups)
|
||
|
|
||
|
cv = check_cv(cv, y, classifier=is_classifier(estimator))
|
||
|
scorer = check_scoring(estimator, scoring=scoring)
|
||
|
random_state = check_random_state(random_state)
|
||
|
|
||
|
# We clone the estimator to make sure that all the folds are
|
||
|
# independent, and that it is pickle-able.
|
||
|
score = _permutation_test_score(clone(estimator), X, y, groups, cv, scorer)
|
||
|
permutation_scores = Parallel(n_jobs=n_jobs, verbose=verbose)(
|
||
|
delayed(_permutation_test_score)(
|
||
|
clone(estimator), X, _shuffle(y, groups, random_state),
|
||
|
groups, cv, scorer)
|
||
|
for _ in range(n_permutations))
|
||
|
permutation_scores = np.array(permutation_scores)
|
||
|
pvalue = (np.sum(permutation_scores >= score) + 1.0) / (n_permutations + 1)
|
||
|
return score, permutation_scores, pvalue
|
||
|
|
||
|
|
||
|
def _permutation_test_score(estimator, X, y, groups, cv, scorer):
|
||
|
"""Auxiliary function for permutation_test_score"""
|
||
|
avg_score = []
|
||
|
for train, test in cv.split(X, y, groups):
|
||
|
X_train, y_train = _safe_split(estimator, X, y, train)
|
||
|
X_test, y_test = _safe_split(estimator, X, y, test, train)
|
||
|
estimator.fit(X_train, y_train)
|
||
|
avg_score.append(scorer(estimator, X_test, y_test))
|
||
|
return np.mean(avg_score)
|
||
|
|
||
|
|
||
|
def _shuffle(y, groups, random_state):
|
||
|
"""Return a shuffled copy of y eventually shuffle among same groups."""
|
||
|
if groups is None:
|
||
|
indices = random_state.permutation(len(y))
|
||
|
else:
|
||
|
indices = np.arange(len(groups))
|
||
|
for group in np.unique(groups):
|
||
|
this_mask = (groups == group)
|
||
|
indices[this_mask] = random_state.permutation(indices[this_mask])
|
||
|
return _safe_indexing(y, indices)
|
||
|
|
||
|
|
||
|
@_deprecate_positional_args
|
||
|
def learning_curve(estimator, X, y, *, groups=None,
|
||
|
train_sizes=np.linspace(0.1, 1.0, 5), cv=None,
|
||
|
scoring=None, exploit_incremental_learning=False,
|
||
|
n_jobs=None, pre_dispatch="all", verbose=0, shuffle=False,
|
||
|
random_state=None, error_score=np.nan, return_times=False):
|
||
|
"""Learning curve.
|
||
|
|
||
|
Determines cross-validated training and test scores for different training
|
||
|
set sizes.
|
||
|
|
||
|
A cross-validation generator splits the whole dataset k times in training
|
||
|
and test data. Subsets of the training set with varying sizes will be used
|
||
|
to train the estimator and a score for each training subset size and the
|
||
|
test set will be computed. Afterwards, the scores will be averaged over
|
||
|
all k runs for each training subset size.
|
||
|
|
||
|
Read more in the :ref:`User Guide <learning_curve>`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
estimator : object type that implements the "fit" and "predict" methods
|
||
|
An object of that type which is cloned for each validation.
|
||
|
|
||
|
X : array-like of shape (n_samples, n_features)
|
||
|
Training vector, where n_samples is the number of samples and
|
||
|
n_features is the number of features.
|
||
|
|
||
|
y : array-like of shape (n_samples,) or (n_samples, n_outputs)
|
||
|
Target relative to X for classification or regression;
|
||
|
None for unsupervised learning.
|
||
|
|
||
|
groups : array-like of shape (n_samples,), default=None
|
||
|
Group labels for the samples used while splitting the dataset into
|
||
|
train/test set. Only used in conjunction with a "Group" :term:`cv`
|
||
|
instance (e.g., :class:`GroupKFold`).
|
||
|
|
||
|
train_sizes : array-like of shape (n_ticks,), \
|
||
|
default=np.linspace(0.1, 1.0, 5)
|
||
|
Relative or absolute numbers of training examples that will be used to
|
||
|
generate the learning curve. If the dtype is float, it is regarded as a
|
||
|
fraction of the maximum size of the training set (that is determined
|
||
|
by the selected validation method), i.e. it has to be within (0, 1].
|
||
|
Otherwise it is interpreted as absolute sizes of the training sets.
|
||
|
Note that for classification the number of samples usually have to
|
||
|
be big enough to contain at least one sample from each class.
|
||
|
|
||
|
cv : int, cross-validation generator or an iterable, default=None
|
||
|
Determines the cross-validation splitting strategy.
|
||
|
Possible inputs for cv are:
|
||
|
|
||
|
- None, to use the default 5-fold cross validation,
|
||
|
- int, to specify the number of folds in a `(Stratified)KFold`,
|
||
|
- :term:`CV splitter`,
|
||
|
- An iterable yielding (train, test) splits as arrays of indices.
|
||
|
|
||
|
For int/None inputs, if the estimator is a classifier and ``y`` is
|
||
|
either binary or multiclass, :class:`StratifiedKFold` is used. In all
|
||
|
other cases, :class:`KFold` is used.
|
||
|
|
||
|
Refer :ref:`User Guide <cross_validation>` for the various
|
||
|
cross-validation strategies that can be used here.
|
||
|
|
||
|
.. versionchanged:: 0.22
|
||
|
``cv`` default value if None changed from 3-fold to 5-fold.
|
||
|
|
||
|
scoring : str or callable, default=None
|
||
|
A str (see model evaluation documentation) or
|
||
|
a scorer callable object / function with signature
|
||
|
``scorer(estimator, X, y)``.
|
||
|
|
||
|
exploit_incremental_learning : bool, default=False
|
||
|
If the estimator supports incremental learning, this will be
|
||
|
used to speed up fitting for different training set sizes.
|
||
|
|
||
|
n_jobs : int, default=None
|
||
|
Number of jobs to run in parallel.
|
||
|
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
||
|
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
||
|
for more details.
|
||
|
|
||
|
pre_dispatch : int or str, default='all'
|
||
|
Number of predispatched jobs for parallel execution (default is
|
||
|
all). The option can reduce the allocated memory. The str can
|
||
|
be an expression like '2*n_jobs'.
|
||
|
|
||
|
verbose : int, default=0
|
||
|
Controls the verbosity: the higher, the more messages.
|
||
|
|
||
|
shuffle : bool, default=False
|
||
|
Whether to shuffle training data before taking prefixes of it
|
||
|
based on``train_sizes``.
|
||
|
|
||
|
random_state : int or RandomState instance, default=None
|
||
|
Used when ``shuffle`` is True. Pass an int for reproducible
|
||
|
output across multiple function calls.
|
||
|
See :term:`Glossary <random_state>`.
|
||
|
|
||
|
error_score : 'raise' or numeric, default=np.nan
|
||
|
Value to assign to the score if an error occurs in estimator fitting.
|
||
|
If set to 'raise', the error is raised.
|
||
|
If a numeric value is given, FitFailedWarning is raised. This parameter
|
||
|
does not affect the refit step, which will always raise the error.
|
||
|
|
||
|
.. versionadded:: 0.20
|
||
|
|
||
|
return_times : bool, default=False
|
||
|
Whether to return the fit and score times.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
train_sizes_abs : array of shape (n_unique_ticks,)
|
||
|
Numbers of training examples that has been used to generate the
|
||
|
learning curve. Note that the number of ticks might be less
|
||
|
than n_ticks because duplicate entries will be removed.
|
||
|
|
||
|
train_scores : array of shape (n_ticks, n_cv_folds)
|
||
|
Scores on training sets.
|
||
|
|
||
|
test_scores : array of shape (n_ticks, n_cv_folds)
|
||
|
Scores on test set.
|
||
|
|
||
|
fit_times : array of shape (n_ticks, n_cv_folds)
|
||
|
Times spent for fitting in seconds. Only present if ``return_times``
|
||
|
is True.
|
||
|
|
||
|
score_times : array of shape (n_ticks, n_cv_folds)
|
||
|
Times spent for scoring in seconds. Only present if ``return_times``
|
||
|
is True.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
See :ref:`examples/model_selection/plot_learning_curve.py
|
||
|
<sphx_glr_auto_examples_model_selection_plot_learning_curve.py>`
|
||
|
"""
|
||
|
if exploit_incremental_learning and not hasattr(estimator, "partial_fit"):
|
||
|
raise ValueError("An estimator must support the partial_fit interface "
|
||
|
"to exploit incremental learning")
|
||
|
X, y, groups = indexable(X, y, groups)
|
||
|
|
||
|
cv = check_cv(cv, y, classifier=is_classifier(estimator))
|
||
|
# Store it as list as we will be iterating over the list multiple times
|
||
|
cv_iter = list(cv.split(X, y, groups))
|
||
|
|
||
|
scorer = check_scoring(estimator, scoring=scoring)
|
||
|
|
||
|
n_max_training_samples = len(cv_iter[0][0])
|
||
|
# Because the lengths of folds can be significantly different, it is
|
||
|
# not guaranteed that we use all of the available training data when we
|
||
|
# use the first 'n_max_training_samples' samples.
|
||
|
train_sizes_abs = _translate_train_sizes(train_sizes,
|
||
|
n_max_training_samples)
|
||
|
n_unique_ticks = train_sizes_abs.shape[0]
|
||
|
if verbose > 0:
|
||
|
print("[learning_curve] Training set sizes: " + str(train_sizes_abs))
|
||
|
|
||
|
parallel = Parallel(n_jobs=n_jobs, pre_dispatch=pre_dispatch,
|
||
|
verbose=verbose)
|
||
|
|
||
|
if shuffle:
|
||
|
rng = check_random_state(random_state)
|
||
|
cv_iter = ((rng.permutation(train), test) for train, test in cv_iter)
|
||
|
|
||
|
if exploit_incremental_learning:
|
||
|
classes = np.unique(y) if is_classifier(estimator) else None
|
||
|
out = parallel(delayed(_incremental_fit_estimator)(
|
||
|
clone(estimator), X, y, classes, train, test, train_sizes_abs,
|
||
|
scorer, verbose, return_times) for train, test in cv_iter)
|
||
|
else:
|
||
|
train_test_proportions = []
|
||
|
for train, test in cv_iter:
|
||
|
for n_train_samples in train_sizes_abs:
|
||
|
train_test_proportions.append((train[:n_train_samples], test))
|
||
|
|
||
|
out = parallel(delayed(_fit_and_score)(
|
||
|
clone(estimator), X, y, scorer, train, test, verbose,
|
||
|
parameters=None, fit_params=None, return_train_score=True,
|
||
|
error_score=error_score, return_times=return_times)
|
||
|
for train, test in train_test_proportions)
|
||
|
out = np.array(out)
|
||
|
n_cv_folds = out.shape[0] // n_unique_ticks
|
||
|
dim = 4 if return_times else 2
|
||
|
out = out.reshape(n_cv_folds, n_unique_ticks, dim)
|
||
|
|
||
|
out = np.asarray(out).transpose((2, 1, 0))
|
||
|
|
||
|
ret = train_sizes_abs, out[0], out[1]
|
||
|
|
||
|
if return_times:
|
||
|
ret = ret + (out[2], out[3])
|
||
|
|
||
|
return ret
|
||
|
|
||
|
|
||
|
def _translate_train_sizes(train_sizes, n_max_training_samples):
|
||
|
"""Determine absolute sizes of training subsets and validate 'train_sizes'.
|
||
|
|
||
|
Examples:
|
||
|
_translate_train_sizes([0.5, 1.0], 10) -> [5, 10]
|
||
|
_translate_train_sizes([5, 10], 10) -> [5, 10]
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
train_sizes : array-like of shape (n_ticks,)
|
||
|
Numbers of training examples that will be used to generate the
|
||
|
learning curve. If the dtype is float, it is regarded as a
|
||
|
fraction of 'n_max_training_samples', i.e. it has to be within (0, 1].
|
||
|
|
||
|
n_max_training_samples : int
|
||
|
Maximum number of training samples (upper bound of 'train_sizes').
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
train_sizes_abs : array of shape (n_unique_ticks,)
|
||
|
Numbers of training examples that will be used to generate the
|
||
|
learning curve. Note that the number of ticks might be less
|
||
|
than n_ticks because duplicate entries will be removed.
|
||
|
"""
|
||
|
train_sizes_abs = np.asarray(train_sizes)
|
||
|
n_ticks = train_sizes_abs.shape[0]
|
||
|
n_min_required_samples = np.min(train_sizes_abs)
|
||
|
n_max_required_samples = np.max(train_sizes_abs)
|
||
|
if np.issubdtype(train_sizes_abs.dtype, np.floating):
|
||
|
if n_min_required_samples <= 0.0 or n_max_required_samples > 1.0:
|
||
|
raise ValueError("train_sizes has been interpreted as fractions "
|
||
|
"of the maximum number of training samples and "
|
||
|
"must be within (0, 1], but is within [%f, %f]."
|
||
|
% (n_min_required_samples,
|
||
|
n_max_required_samples))
|
||
|
train_sizes_abs = (train_sizes_abs * n_max_training_samples).astype(
|
||
|
dtype=np.int, copy=False)
|
||
|
train_sizes_abs = np.clip(train_sizes_abs, 1,
|
||
|
n_max_training_samples)
|
||
|
else:
|
||
|
if (n_min_required_samples <= 0 or
|
||
|
n_max_required_samples > n_max_training_samples):
|
||
|
raise ValueError("train_sizes has been interpreted as absolute "
|
||
|
"numbers of training samples and must be within "
|
||
|
"(0, %d], but is within [%d, %d]."
|
||
|
% (n_max_training_samples,
|
||
|
n_min_required_samples,
|
||
|
n_max_required_samples))
|
||
|
|
||
|
train_sizes_abs = np.unique(train_sizes_abs)
|
||
|
if n_ticks > train_sizes_abs.shape[0]:
|
||
|
warnings.warn("Removed duplicate entries from 'train_sizes'. Number "
|
||
|
"of ticks will be less than the size of "
|
||
|
"'train_sizes' %d instead of %d)."
|
||
|
% (train_sizes_abs.shape[0], n_ticks), RuntimeWarning)
|
||
|
|
||
|
return train_sizes_abs
|
||
|
|
||
|
|
||
|
def _incremental_fit_estimator(estimator, X, y, classes, train, test,
|
||
|
train_sizes, scorer, verbose, return_times):
|
||
|
"""Train estimator on training subsets incrementally and compute scores."""
|
||
|
train_scores, test_scores, fit_times, score_times = [], [], [], []
|
||
|
partitions = zip(train_sizes, np.split(train, train_sizes)[:-1])
|
||
|
for n_train_samples, partial_train in partitions:
|
||
|
train_subset = train[:n_train_samples]
|
||
|
X_train, y_train = _safe_split(estimator, X, y, train_subset)
|
||
|
X_partial_train, y_partial_train = _safe_split(estimator, X, y,
|
||
|
partial_train)
|
||
|
X_test, y_test = _safe_split(estimator, X, y, test, train_subset)
|
||
|
start_fit = time.time()
|
||
|
if y_partial_train is None:
|
||
|
estimator.partial_fit(X_partial_train, classes=classes)
|
||
|
else:
|
||
|
estimator.partial_fit(X_partial_train, y_partial_train,
|
||
|
classes=classes)
|
||
|
fit_time = time.time() - start_fit
|
||
|
fit_times.append(fit_time)
|
||
|
|
||
|
start_score = time.time()
|
||
|
|
||
|
test_scores.append(_score(estimator, X_test, y_test, scorer))
|
||
|
train_scores.append(_score(estimator, X_train, y_train, scorer))
|
||
|
|
||
|
score_time = time.time() - start_score
|
||
|
score_times.append(score_time)
|
||
|
|
||
|
ret = ((train_scores, test_scores, fit_times, score_times)
|
||
|
if return_times else (train_scores, test_scores))
|
||
|
|
||
|
return np.array(ret).T
|
||
|
|
||
|
|
||
|
@_deprecate_positional_args
|
||
|
def validation_curve(estimator, X, y, *, param_name, param_range, groups=None,
|
||
|
cv=None, scoring=None, n_jobs=None, pre_dispatch="all",
|
||
|
verbose=0, error_score=np.nan):
|
||
|
"""Validation curve.
|
||
|
|
||
|
Determine training and test scores for varying parameter values.
|
||
|
|
||
|
Compute scores for an estimator with different values of a specified
|
||
|
parameter. This is similar to grid search with one parameter. However, this
|
||
|
will also compute training scores and is merely a utility for plotting the
|
||
|
results.
|
||
|
|
||
|
Read more in the :ref:`User Guide <validation_curve>`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
estimator : object type that implements the "fit" and "predict" methods
|
||
|
An object of that type which is cloned for each validation.
|
||
|
|
||
|
X : array-like of shape (n_samples, n_features)
|
||
|
Training vector, where n_samples is the number of samples and
|
||
|
n_features is the number of features.
|
||
|
|
||
|
y : array-like of shape (n_samples,) or (n_samples, n_outputs) or None
|
||
|
Target relative to X for classification or regression;
|
||
|
None for unsupervised learning.
|
||
|
|
||
|
param_name : str
|
||
|
Name of the parameter that will be varied.
|
||
|
|
||
|
param_range : array-like of shape (n_values,)
|
||
|
The values of the parameter that will be evaluated.
|
||
|
|
||
|
groups : array-like of shape (n_samples,), default=None
|
||
|
Group labels for the samples used while splitting the dataset into
|
||
|
train/test set. Only used in conjunction with a "Group" :term:`cv`
|
||
|
instance (e.g., :class:`GroupKFold`).
|
||
|
|
||
|
cv : int, cross-validation generator or an iterable, default=None
|
||
|
Determines the cross-validation splitting strategy.
|
||
|
Possible inputs for cv are:
|
||
|
|
||
|
- None, to use the default 5-fold cross validation,
|
||
|
- int, to specify the number of folds in a `(Stratified)KFold`,
|
||
|
- :term:`CV splitter`,
|
||
|
- An iterable yielding (train, test) splits as arrays of indices.
|
||
|
|
||
|
For int/None inputs, if the estimator is a classifier and ``y`` is
|
||
|
either binary or multiclass, :class:`StratifiedKFold` is used. In all
|
||
|
other cases, :class:`KFold` is used.
|
||
|
|
||
|
Refer :ref:`User Guide <cross_validation>` for the various
|
||
|
cross-validation strategies that can be used here.
|
||
|
|
||
|
.. versionchanged:: 0.22
|
||
|
``cv`` default value if None changed from 3-fold to 5-fold.
|
||
|
|
||
|
scoring : str or callable, default=None
|
||
|
A str (see model evaluation documentation) or
|
||
|
a scorer callable object / function with signature
|
||
|
``scorer(estimator, X, y)``.
|
||
|
|
||
|
n_jobs : int, default=None
|
||
|
Number of jobs to run in parallel.
|
||
|
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
||
|
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
||
|
for more details.
|
||
|
|
||
|
pre_dispatch : int or str, default='all'
|
||
|
Number of predispatched jobs for parallel execution (default is
|
||
|
all). The option can reduce the allocated memory. The str can
|
||
|
be an expression like '2*n_jobs'.
|
||
|
|
||
|
verbose : int, default=0
|
||
|
Controls the verbosity: the higher, the more messages.
|
||
|
|
||
|
error_score : 'raise' or numeric, default=np.nan
|
||
|
Value to assign to the score if an error occurs in estimator fitting.
|
||
|
If set to 'raise', the error is raised.
|
||
|
If a numeric value is given, FitFailedWarning is raised. This parameter
|
||
|
does not affect the refit step, which will always raise the error.
|
||
|
|
||
|
.. versionadded:: 0.20
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
train_scores : array of shape (n_ticks, n_cv_folds)
|
||
|
Scores on training sets.
|
||
|
|
||
|
test_scores : array of shape (n_ticks, n_cv_folds)
|
||
|
Scores on test set.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
See :ref:`sphx_glr_auto_examples_model_selection_plot_validation_curve.py`
|
||
|
|
||
|
"""
|
||
|
X, y, groups = indexable(X, y, groups)
|
||
|
|
||
|
cv = check_cv(cv, y, classifier=is_classifier(estimator))
|
||
|
scorer = check_scoring(estimator, scoring=scoring)
|
||
|
|
||
|
parallel = Parallel(n_jobs=n_jobs, pre_dispatch=pre_dispatch,
|
||
|
verbose=verbose)
|
||
|
out = parallel(delayed(_fit_and_score)(
|
||
|
clone(estimator), X, y, scorer, train, test, verbose,
|
||
|
parameters={param_name: v}, fit_params=None, return_train_score=True,
|
||
|
error_score=error_score)
|
||
|
# NOTE do not change order of iteration to allow one time cv splitters
|
||
|
for train, test in cv.split(X, y, groups) for v in param_range)
|
||
|
out = np.asarray(out)
|
||
|
n_params = len(param_range)
|
||
|
n_cv_folds = out.shape[0] // n_params
|
||
|
out = out.reshape(n_cv_folds, n_params, 2).transpose((2, 1, 0))
|
||
|
|
||
|
return out[0], out[1]
|
||
|
|
||
|
|
||
|
def _aggregate_score_dicts(scores):
|
||
|
"""Aggregate the list of dict to dict of np ndarray
|
||
|
|
||
|
The aggregated output of _fit_and_score will be a list of dict
|
||
|
of form [{'prec': 0.1, 'acc':1.0}, {'prec': 0.1, 'acc':1.0}, ...]
|
||
|
Convert it to a dict of array {'prec': np.array([0.1 ...]), ...}
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
|
||
|
scores : list of dict
|
||
|
List of dicts of the scores for all scorers. This is a flat list,
|
||
|
assumed originally to be of row major order.
|
||
|
|
||
|
Example
|
||
|
-------
|
||
|
|
||
|
>>> scores = [{'a': 1, 'b':10}, {'a': 2, 'b':2}, {'a': 3, 'b':3},
|
||
|
... {'a': 10, 'b': 10}] # doctest: +SKIP
|
||
|
>>> _aggregate_score_dicts(scores) # doctest: +SKIP
|
||
|
{'a': array([1, 2, 3, 10]),
|
||
|
'b': array([10, 2, 3, 10])}
|
||
|
"""
|
||
|
return {key: np.asarray([score[key] for score in scores])
|
||
|
for key in scores[0]}
|