981 lines
38 KiB
Python
981 lines
38 KiB
Python
|
# Copyright 2016 Google Inc. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
"""Google Cloud Bigtable HappyBase table module."""
|
||
|
|
||
|
|
||
|
import struct
|
||
|
import warnings
|
||
|
|
||
|
import six
|
||
|
|
||
|
from gcloud._helpers import _datetime_from_microseconds
|
||
|
from gcloud._helpers import _microseconds_from_datetime
|
||
|
from gcloud._helpers import _to_bytes
|
||
|
from gcloud._helpers import _total_seconds
|
||
|
from gcloud.bigtable.column_family import GCRuleIntersection
|
||
|
from gcloud.bigtable.column_family import MaxAgeGCRule
|
||
|
from gcloud.bigtable.column_family import MaxVersionsGCRule
|
||
|
from gcloud.bigtable.happybase.batch import _get_column_pairs
|
||
|
from gcloud.bigtable.happybase.batch import _WAL_SENTINEL
|
||
|
from gcloud.bigtable.happybase.batch import Batch
|
||
|
from gcloud.bigtable.row_filters import CellsColumnLimitFilter
|
||
|
from gcloud.bigtable.row_filters import ColumnQualifierRegexFilter
|
||
|
from gcloud.bigtable.row_filters import FamilyNameRegexFilter
|
||
|
from gcloud.bigtable.row_filters import RowFilterChain
|
||
|
from gcloud.bigtable.row_filters import RowFilterUnion
|
||
|
from gcloud.bigtable.row_filters import RowKeyRegexFilter
|
||
|
from gcloud.bigtable.row_filters import TimestampRange
|
||
|
from gcloud.bigtable.row_filters import TimestampRangeFilter
|
||
|
from gcloud.bigtable.table import Table as _LowLevelTable
|
||
|
|
||
|
|
||
|
_WARN = warnings.warn
|
||
|
_UNPACK_I64 = struct.Struct('>q').unpack
|
||
|
_SIMPLE_GC_RULES = (MaxAgeGCRule, MaxVersionsGCRule)
|
||
|
|
||
|
|
||
|
def make_row(cell_map, include_timestamp):
|
||
|
"""Make a row dict for a Thrift cell mapping.
|
||
|
|
||
|
.. warning::
|
||
|
|
||
|
This method is only provided for HappyBase compatibility, but does not
|
||
|
actually work.
|
||
|
|
||
|
:type cell_map: dict
|
||
|
:param cell_map: Dictionary with ``fam:col`` strings as keys and ``TCell``
|
||
|
instances as values.
|
||
|
|
||
|
:type include_timestamp: bool
|
||
|
:param include_timestamp: Flag to indicate if cell timestamps should be
|
||
|
included with the output.
|
||
|
|
||
|
:raises: :class:`NotImplementedError <exceptions.NotImplementedError>`
|
||
|
always
|
||
|
"""
|
||
|
raise NotImplementedError('The Cloud Bigtable API output is not the same '
|
||
|
'as the output from the Thrift server, so this '
|
||
|
'helper can not be implemented.', 'Called with',
|
||
|
cell_map, include_timestamp)
|
||
|
|
||
|
|
||
|
def make_ordered_row(sorted_columns, include_timestamp):
|
||
|
"""Make a row dict for sorted Thrift column results from scans.
|
||
|
|
||
|
.. warning::
|
||
|
|
||
|
This method is only provided for HappyBase compatibility, but does not
|
||
|
actually work.
|
||
|
|
||
|
:type sorted_columns: list
|
||
|
:param sorted_columns: List of ``TColumn`` instances from Thrift.
|
||
|
|
||
|
:type include_timestamp: bool
|
||
|
:param include_timestamp: Flag to indicate if cell timestamps should be
|
||
|
included with the output.
|
||
|
|
||
|
:raises: :class:`NotImplementedError <exceptions.NotImplementedError>`
|
||
|
always
|
||
|
"""
|
||
|
raise NotImplementedError('The Cloud Bigtable API output is not the same '
|
||
|
'as the output from the Thrift server, so this '
|
||
|
'helper can not be implemented.', 'Called with',
|
||
|
sorted_columns, include_timestamp)
|
||
|
|
||
|
|
||
|
class Table(object):
|
||
|
"""Representation of Cloud Bigtable table.
|
||
|
|
||
|
Used for adding data and
|
||
|
|
||
|
:type name: str
|
||
|
:param name: The name of the table.
|
||
|
|
||
|
:type connection: :class:`Connection <.happybase.connection.Connection>`
|
||
|
:param connection: The connection which has access to the table.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, name, connection):
|
||
|
self.name = name
|
||
|
# This remains as legacy for HappyBase, but only the instance
|
||
|
# from the connection is needed.
|
||
|
self.connection = connection
|
||
|
self._low_level_table = None
|
||
|
if self.connection is not None:
|
||
|
self._low_level_table = _LowLevelTable(self.name,
|
||
|
self.connection._instance)
|
||
|
|
||
|
def __repr__(self):
|
||
|
return '<table.Table name=%r>' % (self.name,)
|
||
|
|
||
|
def families(self):
|
||
|
"""Retrieve the column families for this table.
|
||
|
|
||
|
:rtype: dict
|
||
|
:returns: Mapping from column family name to garbage collection rule
|
||
|
for a column family.
|
||
|
"""
|
||
|
column_family_map = self._low_level_table.list_column_families()
|
||
|
result = {}
|
||
|
for col_fam, col_fam_obj in six.iteritems(column_family_map):
|
||
|
result[col_fam] = _gc_rule_to_dict(col_fam_obj.gc_rule)
|
||
|
return result
|
||
|
|
||
|
def regions(self):
|
||
|
"""Retrieve the regions for this table.
|
||
|
|
||
|
.. warning::
|
||
|
|
||
|
Cloud Bigtable does not give information about how a table is laid
|
||
|
out in memory, so this method does not work. It is
|
||
|
provided simply for compatibility.
|
||
|
|
||
|
:raises: :class:`NotImplementedError <exceptions.NotImplementedError>`
|
||
|
always
|
||
|
"""
|
||
|
raise NotImplementedError('The Cloud Bigtable API does not have a '
|
||
|
'concept of splitting a table into regions.')
|
||
|
|
||
|
def row(self, row, columns=None, timestamp=None, include_timestamp=False):
|
||
|
"""Retrieve a single row of data.
|
||
|
|
||
|
Returns the latest cells in each column (or all columns if ``columns``
|
||
|
is not specified). If a ``timestamp`` is set, then **latest** becomes
|
||
|
**latest** up until ``timestamp``.
|
||
|
|
||
|
:type row: str
|
||
|
:param row: Row key for the row we are reading from.
|
||
|
|
||
|
:type columns: list
|
||
|
:param columns: (Optional) Iterable containing column names (as
|
||
|
strings). Each column name can be either
|
||
|
|
||
|
* an entire column family: ``fam`` or ``fam:``
|
||
|
* a single column: ``fam:col``
|
||
|
|
||
|
:type timestamp: int
|
||
|
:param timestamp: (Optional) Timestamp (in milliseconds since the
|
||
|
epoch). If specified, only cells returned before the
|
||
|
the timestamp will be returned.
|
||
|
|
||
|
:type include_timestamp: bool
|
||
|
:param include_timestamp: Flag to indicate if cell timestamps should be
|
||
|
included with the output.
|
||
|
|
||
|
:rtype: dict
|
||
|
:returns: Dictionary containing all the latest column values in
|
||
|
the row.
|
||
|
"""
|
||
|
filters = []
|
||
|
if columns is not None:
|
||
|
filters.append(_columns_filter_helper(columns))
|
||
|
# versions == 1 since we only want the latest.
|
||
|
filter_ = _filter_chain_helper(versions=1, timestamp=timestamp,
|
||
|
filters=filters)
|
||
|
|
||
|
partial_row_data = self._low_level_table.read_row(
|
||
|
row, filter_=filter_)
|
||
|
if partial_row_data is None:
|
||
|
return {}
|
||
|
|
||
|
return _partial_row_to_dict(partial_row_data,
|
||
|
include_timestamp=include_timestamp)
|
||
|
|
||
|
def rows(self, rows, columns=None, timestamp=None,
|
||
|
include_timestamp=False):
|
||
|
"""Retrieve multiple rows of data.
|
||
|
|
||
|
All optional arguments behave the same in this method as they do in
|
||
|
:meth:`row`.
|
||
|
|
||
|
:type rows: list
|
||
|
:param rows: Iterable of the row keys for the rows we are reading from.
|
||
|
|
||
|
:type columns: list
|
||
|
:param columns: (Optional) Iterable containing column names (as
|
||
|
strings). Each column name can be either
|
||
|
|
||
|
* an entire column family: ``fam`` or ``fam:``
|
||
|
* a single column: ``fam:col``
|
||
|
|
||
|
:type timestamp: int
|
||
|
:param timestamp: (Optional) Timestamp (in milliseconds since the
|
||
|
epoch). If specified, only cells returned before (or
|
||
|
at) the timestamp will be returned.
|
||
|
|
||
|
:type include_timestamp: bool
|
||
|
:param include_timestamp: Flag to indicate if cell timestamps should be
|
||
|
included with the output.
|
||
|
|
||
|
:rtype: list
|
||
|
:returns: A list of pairs, where the first is the row key and the
|
||
|
second is a dictionary with the filtered values returned.
|
||
|
"""
|
||
|
if not rows:
|
||
|
# Avoid round-trip if the result is empty anyway
|
||
|
return []
|
||
|
|
||
|
filters = []
|
||
|
if columns is not None:
|
||
|
filters.append(_columns_filter_helper(columns))
|
||
|
filters.append(_row_keys_filter_helper(rows))
|
||
|
# versions == 1 since we only want the latest.
|
||
|
filter_ = _filter_chain_helper(versions=1, timestamp=timestamp,
|
||
|
filters=filters)
|
||
|
|
||
|
partial_rows_data = self._low_level_table.read_rows(filter_=filter_)
|
||
|
# NOTE: We could use max_loops = 1000 or some similar value to ensure
|
||
|
# that the stream isn't open too long.
|
||
|
partial_rows_data.consume_all()
|
||
|
|
||
|
result = []
|
||
|
for row_key in rows:
|
||
|
if row_key not in partial_rows_data.rows:
|
||
|
continue
|
||
|
curr_row_data = partial_rows_data.rows[row_key]
|
||
|
curr_row_dict = _partial_row_to_dict(
|
||
|
curr_row_data, include_timestamp=include_timestamp)
|
||
|
result.append((row_key, curr_row_dict))
|
||
|
|
||
|
return result
|
||
|
|
||
|
def cells(self, row, column, versions=None, timestamp=None,
|
||
|
include_timestamp=False):
|
||
|
"""Retrieve multiple versions of a single cell from the table.
|
||
|
|
||
|
:type row: str
|
||
|
:param row: Row key for the row we are reading from.
|
||
|
|
||
|
:type column: str
|
||
|
:param column: Column we are reading from; of the form ``fam:col``.
|
||
|
|
||
|
:type versions: int
|
||
|
:param versions: (Optional) The maximum number of cells to return. If
|
||
|
not set, returns all cells found.
|
||
|
|
||
|
:type timestamp: int
|
||
|
:param timestamp: (Optional) Timestamp (in milliseconds since the
|
||
|
epoch). If specified, only cells returned before (or
|
||
|
at) the timestamp will be returned.
|
||
|
|
||
|
:type include_timestamp: bool
|
||
|
:param include_timestamp: Flag to indicate if cell timestamps should be
|
||
|
included with the output.
|
||
|
|
||
|
:rtype: list
|
||
|
:returns: List of values in the cell (with timestamps if
|
||
|
``include_timestamp`` is :data:`True`).
|
||
|
"""
|
||
|
filter_ = _filter_chain_helper(column=column, versions=versions,
|
||
|
timestamp=timestamp)
|
||
|
partial_row_data = self._low_level_table.read_row(row, filter_=filter_)
|
||
|
if partial_row_data is None:
|
||
|
return []
|
||
|
else:
|
||
|
cells = partial_row_data._cells
|
||
|
# We know that `_filter_chain_helper` has already verified that
|
||
|
# column will split as such.
|
||
|
column_family_id, column_qualifier = column.split(':')
|
||
|
# NOTE: We expect the only key in `cells` is `column_family_id`
|
||
|
# and the only key `cells[column_family_id]` is
|
||
|
# `column_qualifier`. But we don't check that this is true.
|
||
|
curr_cells = cells[column_family_id][column_qualifier]
|
||
|
return _cells_to_pairs(
|
||
|
curr_cells, include_timestamp=include_timestamp)
|
||
|
|
||
|
def scan(self, row_start=None, row_stop=None, row_prefix=None,
|
||
|
columns=None, timestamp=None,
|
||
|
include_timestamp=False, limit=None, **kwargs):
|
||
|
"""Create a scanner for data in this table.
|
||
|
|
||
|
This method returns a generator that can be used for looping over the
|
||
|
matching rows.
|
||
|
|
||
|
If ``row_prefix`` is specified, only rows with row keys matching the
|
||
|
prefix will be returned. If given, ``row_start`` and ``row_stop``
|
||
|
cannot be used.
|
||
|
|
||
|
.. note::
|
||
|
|
||
|
Both ``row_start`` and ``row_stop`` can be :data:`None` to specify
|
||
|
the start and the end of the table respectively. If both are
|
||
|
omitted, a full table scan is done. Note that this usually results
|
||
|
in severe performance problems.
|
||
|
|
||
|
The keyword argument ``filter`` is also supported (beyond column and
|
||
|
row range filters supported here). HappyBase / HBase users will have
|
||
|
used this as an HBase filter string. (See the `Thrift docs`_ for more
|
||
|
details on those filters.) However, Google Cloud Bigtable doesn't
|
||
|
support those filter strings so a
|
||
|
:class:`~gcloud.bigtable.row.RowFilter` should be used instead.
|
||
|
|
||
|
.. _Thrift docs: http://hbase.apache.org/0.94/book/thrift.html
|
||
|
|
||
|
The arguments ``batch_size``, ``scan_batching`` and ``sorted_columns``
|
||
|
are allowed (as keyword arguments) for compatibility with
|
||
|
HappyBase. However, they will not be used in any way, and will cause a
|
||
|
warning if passed. (The ``batch_size`` determines the number of
|
||
|
results to retrieve per request. The HBase scanner defaults to reading
|
||
|
one record at a time, so this argument allows HappyBase to increase
|
||
|
that number. However, the Cloud Bigtable API uses HTTP/2 streaming so
|
||
|
there is no concept of a batched scan. The ``sorted_columns`` flag
|
||
|
tells HBase to return columns in order, but Cloud Bigtable doesn't
|
||
|
have this feature.)
|
||
|
|
||
|
:type row_start: str
|
||
|
:param row_start: (Optional) Row key where the scanner should start
|
||
|
(includes ``row_start``). If not specified, reads
|
||
|
from the first key. If the table does not contain
|
||
|
``row_start``, it will start from the next key after
|
||
|
it that **is** contained in the table.
|
||
|
|
||
|
:type row_stop: str
|
||
|
:param row_stop: (Optional) Row key where the scanner should stop
|
||
|
(excludes ``row_stop``). If not specified, reads
|
||
|
until the last key. The table does not have to contain
|
||
|
``row_stop``.
|
||
|
|
||
|
:type row_prefix: str
|
||
|
:param row_prefix: (Optional) Prefix to match row keys.
|
||
|
|
||
|
:type columns: list
|
||
|
:param columns: (Optional) Iterable containing column names (as
|
||
|
strings). Each column name can be either
|
||
|
|
||
|
* an entire column family: ``fam`` or ``fam:``
|
||
|
* a single column: ``fam:col``
|
||
|
|
||
|
:type timestamp: int
|
||
|
:param timestamp: (Optional) Timestamp (in milliseconds since the
|
||
|
epoch). If specified, only cells returned before (or
|
||
|
at) the timestamp will be returned.
|
||
|
|
||
|
:type include_timestamp: bool
|
||
|
:param include_timestamp: Flag to indicate if cell timestamps should be
|
||
|
included with the output.
|
||
|
|
||
|
:type limit: int
|
||
|
:param limit: (Optional) Maximum number of rows to return.
|
||
|
|
||
|
:type kwargs: dict
|
||
|
:param kwargs: Remaining keyword arguments. Provided for HappyBase
|
||
|
compatibility.
|
||
|
|
||
|
:raises: If ``limit`` is set but non-positive, or if ``row_prefix`` is
|
||
|
used with row start/stop,
|
||
|
:class:`TypeError <exceptions.TypeError>` if a string
|
||
|
``filter`` is used.
|
||
|
"""
|
||
|
row_start, row_stop, filter_chain = _scan_filter_helper(
|
||
|
row_start, row_stop, row_prefix, columns, timestamp, limit, kwargs)
|
||
|
|
||
|
partial_rows_data = self._low_level_table.read_rows(
|
||
|
start_key=row_start, end_key=row_stop,
|
||
|
limit=limit, filter_=filter_chain)
|
||
|
|
||
|
# Mutable copy of data.
|
||
|
rows_dict = partial_rows_data.rows
|
||
|
while True:
|
||
|
try:
|
||
|
partial_rows_data.consume_next()
|
||
|
for row_key in sorted(rows_dict):
|
||
|
curr_row_data = rows_dict.pop(row_key)
|
||
|
# NOTE: We expect len(rows_dict) == 0, but don't check it.
|
||
|
curr_row_dict = _partial_row_to_dict(
|
||
|
curr_row_data, include_timestamp=include_timestamp)
|
||
|
yield (row_key, curr_row_dict)
|
||
|
except StopIteration:
|
||
|
break
|
||
|
|
||
|
def put(self, row, data, timestamp=None, wal=_WAL_SENTINEL):
|
||
|
"""Insert data into a row in this table.
|
||
|
|
||
|
.. note::
|
||
|
|
||
|
This method will send a request with a single "put" mutation.
|
||
|
In many situations, :meth:`batch` is a more appropriate
|
||
|
method to manipulate data since it helps combine many mutations
|
||
|
into a single request.
|
||
|
|
||
|
:type row: str
|
||
|
:param row: The row key where the mutation will be "put".
|
||
|
|
||
|
:type data: dict
|
||
|
:param data: Dictionary containing the data to be inserted. The keys
|
||
|
are columns names (of the form ``fam:col``) and the values
|
||
|
are strings (bytes) to be stored in those columns.
|
||
|
|
||
|
:type timestamp: int
|
||
|
:param timestamp: (Optional) Timestamp (in milliseconds since the
|
||
|
epoch) that the mutation will be applied at.
|
||
|
|
||
|
:type wal: object
|
||
|
:param wal: Unused parameter (to be passed to a created batch).
|
||
|
Provided for compatibility with HappyBase, but irrelevant
|
||
|
for Cloud Bigtable since it does not have a Write Ahead
|
||
|
Log.
|
||
|
"""
|
||
|
with self.batch(timestamp=timestamp, wal=wal) as batch:
|
||
|
batch.put(row, data)
|
||
|
|
||
|
def delete(self, row, columns=None, timestamp=None, wal=_WAL_SENTINEL):
|
||
|
"""Delete data from a row in this table.
|
||
|
|
||
|
This method deletes the entire ``row`` if ``columns`` is not
|
||
|
specified.
|
||
|
|
||
|
.. note::
|
||
|
|
||
|
This method will send a request with a single delete mutation.
|
||
|
In many situations, :meth:`batch` is a more appropriate
|
||
|
method to manipulate data since it helps combine many mutations
|
||
|
into a single request.
|
||
|
|
||
|
:type row: str
|
||
|
:param row: The row key where the delete will occur.
|
||
|
|
||
|
:type columns: list
|
||
|
:param columns: (Optional) Iterable containing column names (as
|
||
|
strings). Each column name can be either
|
||
|
|
||
|
* an entire column family: ``fam`` or ``fam:``
|
||
|
* a single column: ``fam:col``
|
||
|
|
||
|
:type timestamp: int
|
||
|
:param timestamp: (Optional) Timestamp (in milliseconds since the
|
||
|
epoch) that the mutation will be applied at.
|
||
|
|
||
|
:type wal: object
|
||
|
:param wal: Unused parameter (to be passed to a created batch).
|
||
|
Provided for compatibility with HappyBase, but irrelevant
|
||
|
for Cloud Bigtable since it does not have a Write Ahead
|
||
|
Log.
|
||
|
"""
|
||
|
with self.batch(timestamp=timestamp, wal=wal) as batch:
|
||
|
batch.delete(row, columns)
|
||
|
|
||
|
def batch(self, timestamp=None, batch_size=None, transaction=False,
|
||
|
wal=_WAL_SENTINEL):
|
||
|
"""Create a new batch operation for this table.
|
||
|
|
||
|
This method returns a new
|
||
|
:class:`Batch <.happybase.batch.Batch>` instance that can be
|
||
|
used for mass data manipulation.
|
||
|
|
||
|
:type timestamp: int
|
||
|
:param timestamp: (Optional) Timestamp (in milliseconds since the
|
||
|
epoch) that all mutations will be applied at.
|
||
|
|
||
|
:type batch_size: int
|
||
|
:param batch_size: (Optional) The maximum number of mutations to allow
|
||
|
to accumulate before committing them.
|
||
|
|
||
|
:type transaction: bool
|
||
|
:param transaction: Flag indicating if the mutations should be sent
|
||
|
transactionally or not. If ``transaction=True`` and
|
||
|
an error occurs while a
|
||
|
:class:`Batch <.happybase.batch.Batch>` is
|
||
|
active, then none of the accumulated mutations will
|
||
|
be committed. If ``batch_size`` is set, the
|
||
|
mutation can't be transactional.
|
||
|
|
||
|
:type wal: object
|
||
|
:param wal: Unused parameter (to be passed to the created batch).
|
||
|
Provided for compatibility with HappyBase, but irrelevant
|
||
|
for Cloud Bigtable since it does not have a Write Ahead
|
||
|
Log.
|
||
|
|
||
|
:rtype: :class:`Batch <gcloud.bigtable.happybase.batch.Batch>`
|
||
|
:returns: A batch bound to this table.
|
||
|
"""
|
||
|
return Batch(self, timestamp=timestamp, batch_size=batch_size,
|
||
|
transaction=transaction, wal=wal)
|
||
|
|
||
|
def counter_get(self, row, column):
|
||
|
"""Retrieve the current value of a counter column.
|
||
|
|
||
|
This method retrieves the current value of a counter column. If the
|
||
|
counter column does not exist, this function initializes it to ``0``.
|
||
|
|
||
|
.. note::
|
||
|
|
||
|
Application code should **never** store a counter value directly;
|
||
|
use the atomic :meth:`counter_inc` and :meth:`counter_dec` methods
|
||
|
for that.
|
||
|
|
||
|
:type row: str
|
||
|
:param row: Row key for the row we are getting a counter from.
|
||
|
|
||
|
:type column: str
|
||
|
:param column: Column we are ``get``-ing from; of the form ``fam:col``.
|
||
|
|
||
|
:rtype: int
|
||
|
:returns: Counter value (after initializing / incrementing by 0).
|
||
|
"""
|
||
|
# Don't query directly, but increment with value=0 so that the counter
|
||
|
# is correctly initialized if didn't exist yet.
|
||
|
return self.counter_inc(row, column, value=0)
|
||
|
|
||
|
def counter_set(self, row, column, value=0):
|
||
|
"""Set a counter column to a specific value.
|
||
|
|
||
|
This method is provided in HappyBase, but we do not provide it here
|
||
|
because it defeats the purpose of using atomic increment and decrement
|
||
|
of a counter.
|
||
|
|
||
|
:type row: str
|
||
|
:param row: Row key for the row we are setting a counter in.
|
||
|
|
||
|
:type column: str
|
||
|
:param column: Column we are setting a value in; of
|
||
|
the form ``fam:col``.
|
||
|
|
||
|
:type value: int
|
||
|
:param value: Value to set the counter to.
|
||
|
|
||
|
:raises: :class:`NotImplementedError <exceptions.NotImplementedError>`
|
||
|
always
|
||
|
"""
|
||
|
raise NotImplementedError('Table.counter_set will not be implemented. '
|
||
|
'Instead use the increment/decrement '
|
||
|
'methods along with counter_get.')
|
||
|
|
||
|
def counter_inc(self, row, column, value=1):
|
||
|
"""Atomically increment a counter column.
|
||
|
|
||
|
This method atomically increments a counter column in ``row``.
|
||
|
If the counter column does not exist, it is automatically initialized
|
||
|
to ``0`` before being incremented.
|
||
|
|
||
|
:type row: str
|
||
|
:param row: Row key for the row we are incrementing a counter in.
|
||
|
|
||
|
:type column: str
|
||
|
:param column: Column we are incrementing a value in; of the
|
||
|
form ``fam:col``.
|
||
|
|
||
|
:type value: int
|
||
|
:param value: Amount to increment the counter by. (If negative,
|
||
|
this is equivalent to decrement.)
|
||
|
|
||
|
:rtype: int
|
||
|
:returns: Counter value after incrementing.
|
||
|
"""
|
||
|
row = self._low_level_table.row(row, append=True)
|
||
|
if isinstance(column, six.binary_type):
|
||
|
column = column.decode('utf-8')
|
||
|
column_family_id, column_qualifier = column.split(':')
|
||
|
row.increment_cell_value(column_family_id, column_qualifier, value)
|
||
|
# See AppendRow.commit() will return a dictionary:
|
||
|
# {
|
||
|
# u'col-fam-id': {
|
||
|
# b'col-name1': [
|
||
|
# (b'cell-val', datetime.datetime(...)),
|
||
|
# ...
|
||
|
# ],
|
||
|
# ...
|
||
|
# },
|
||
|
# }
|
||
|
modified_cells = row.commit()
|
||
|
# Get the cells in the modified column,
|
||
|
column_cells = modified_cells[column_family_id][column_qualifier]
|
||
|
# Make sure there is exactly one cell in the column.
|
||
|
if len(column_cells) != 1:
|
||
|
raise ValueError('Expected server to return one modified cell.')
|
||
|
column_cell = column_cells[0]
|
||
|
# Get the bytes value from the column and convert it to an integer.
|
||
|
bytes_value = column_cell[0]
|
||
|
int_value, = _UNPACK_I64(bytes_value)
|
||
|
return int_value
|
||
|
|
||
|
def counter_dec(self, row, column, value=1):
|
||
|
"""Atomically decrement a counter column.
|
||
|
|
||
|
This method atomically decrements a counter column in ``row``.
|
||
|
If the counter column does not exist, it is automatically initialized
|
||
|
to ``0`` before being decremented.
|
||
|
|
||
|
:type row: str
|
||
|
:param row: Row key for the row we are decrementing a counter in.
|
||
|
|
||
|
:type column: str
|
||
|
:param column: Column we are decrementing a value in; of the
|
||
|
form ``fam:col``.
|
||
|
|
||
|
:type value: int
|
||
|
:param value: Amount to decrement the counter by. (If negative,
|
||
|
this is equivalent to increment.)
|
||
|
|
||
|
:rtype: int
|
||
|
:returns: Counter value after decrementing.
|
||
|
"""
|
||
|
return self.counter_inc(row, column, -value)
|
||
|
|
||
|
|
||
|
def _gc_rule_to_dict(gc_rule):
|
||
|
"""Converts garbage collection rule to dictionary if possible.
|
||
|
|
||
|
This is in place to support dictionary values as was done
|
||
|
in HappyBase, which has somewhat different garbage collection rule
|
||
|
settings for column families.
|
||
|
|
||
|
Only does this if the garbage collection rule is:
|
||
|
|
||
|
* :class:`gcloud.bigtable.column_family.MaxAgeGCRule`
|
||
|
* :class:`gcloud.bigtable.column_family.MaxVersionsGCRule`
|
||
|
* Composite :class:`gcloud.bigtable.column_family.GCRuleIntersection`
|
||
|
with two rules, one each of type
|
||
|
:class:`gcloud.bigtable.column_family.MaxAgeGCRule` and
|
||
|
:class:`gcloud.bigtable.column_family.MaxVersionsGCRule`
|
||
|
|
||
|
Otherwise, just returns the input without change.
|
||
|
|
||
|
:type gc_rule: :data:`NoneType <types.NoneType>`,
|
||
|
:class:`.GarbageCollectionRule`
|
||
|
:param gc_rule: A garbage collection rule to convert to a dictionary
|
||
|
(if possible).
|
||
|
|
||
|
:rtype: dict or
|
||
|
:class:`gcloud.bigtable.column_family.GarbageCollectionRule`
|
||
|
:returns: The converted garbage collection rule.
|
||
|
"""
|
||
|
result = gc_rule
|
||
|
if gc_rule is None:
|
||
|
result = {}
|
||
|
elif isinstance(gc_rule, MaxAgeGCRule):
|
||
|
result = {'time_to_live': _total_seconds(gc_rule.max_age)}
|
||
|
elif isinstance(gc_rule, MaxVersionsGCRule):
|
||
|
result = {'max_versions': gc_rule.max_num_versions}
|
||
|
elif isinstance(gc_rule, GCRuleIntersection):
|
||
|
if len(gc_rule.rules) == 2:
|
||
|
rule1, rule2 = gc_rule.rules
|
||
|
if (isinstance(rule1, _SIMPLE_GC_RULES) and
|
||
|
isinstance(rule2, _SIMPLE_GC_RULES)):
|
||
|
rule1 = _gc_rule_to_dict(rule1)
|
||
|
rule2 = _gc_rule_to_dict(rule2)
|
||
|
key1, = rule1.keys()
|
||
|
key2, = rule2.keys()
|
||
|
if key1 != key2:
|
||
|
result = {key1: rule1[key1], key2: rule2[key2]}
|
||
|
return result
|
||
|
|
||
|
|
||
|
def _next_char(str_val, index):
|
||
|
"""Gets the next character based on a position in a string.
|
||
|
|
||
|
:type str_val: str
|
||
|
:param str_val: A string containing the character to update.
|
||
|
|
||
|
:type index: int
|
||
|
:param index: An integer index in ``str_val``.
|
||
|
|
||
|
:rtype: str
|
||
|
:returns: The next character after the character at ``index``
|
||
|
in ``str_val``.
|
||
|
"""
|
||
|
ord_val = six.indexbytes(str_val, index)
|
||
|
return _to_bytes(chr(ord_val + 1), encoding='latin-1')
|
||
|
|
||
|
|
||
|
def _string_successor(str_val):
|
||
|
"""Increment and truncate a byte string.
|
||
|
|
||
|
Determines shortest string that sorts after the given string when
|
||
|
compared using regular string comparison semantics.
|
||
|
|
||
|
Modeled after implementation in ``gcloud-golang``.
|
||
|
|
||
|
Increments the last byte that is smaller than ``0xFF``, and
|
||
|
drops everything after it. If the string only contains ``0xFF`` bytes,
|
||
|
``''`` is returned.
|
||
|
|
||
|
:type str_val: str
|
||
|
:param str_val: String to increment.
|
||
|
|
||
|
:rtype: str
|
||
|
:returns: The next string in lexical order after ``str_val``.
|
||
|
"""
|
||
|
str_val = _to_bytes(str_val, encoding='latin-1')
|
||
|
if str_val == b'':
|
||
|
return str_val
|
||
|
|
||
|
index = len(str_val) - 1
|
||
|
while index >= 0:
|
||
|
if six.indexbytes(str_val, index) != 0xff:
|
||
|
break
|
||
|
index -= 1
|
||
|
|
||
|
if index == -1:
|
||
|
return b''
|
||
|
|
||
|
return str_val[:index] + _next_char(str_val, index)
|
||
|
|
||
|
|
||
|
def _convert_to_time_range(timestamp=None):
|
||
|
"""Create a timestamp range from an HBase / HappyBase timestamp.
|
||
|
|
||
|
HBase uses timestamp as an argument to specify an exclusive end
|
||
|
deadline. Cloud Bigtable also uses exclusive end times, so
|
||
|
the behavior matches.
|
||
|
|
||
|
:type timestamp: int
|
||
|
:param timestamp: (Optional) Timestamp (in milliseconds since the
|
||
|
epoch). Intended to be used as the end of an HBase
|
||
|
time range, which is exclusive.
|
||
|
|
||
|
:rtype: :class:`gcloud.bigtable.row.TimestampRange`,
|
||
|
:data:`NoneType <types.NoneType>`
|
||
|
:returns: The timestamp range corresponding to the passed in
|
||
|
``timestamp``.
|
||
|
"""
|
||
|
if timestamp is None:
|
||
|
return None
|
||
|
|
||
|
next_timestamp = _datetime_from_microseconds(1000 * timestamp)
|
||
|
return TimestampRange(end=next_timestamp)
|
||
|
|
||
|
|
||
|
def _cells_to_pairs(cells, include_timestamp=False):
|
||
|
"""Converts list of cells to HappyBase format.
|
||
|
|
||
|
For example::
|
||
|
|
||
|
>>> import datetime
|
||
|
>>> from gcloud.bigtable.row_data import Cell
|
||
|
>>> cell1 = Cell(b'val1', datetime.datetime.utcnow())
|
||
|
>>> cell2 = Cell(b'val2', datetime.datetime.utcnow())
|
||
|
>>> _cells_to_pairs([cell1, cell2])
|
||
|
[b'val1', b'val2']
|
||
|
>>> _cells_to_pairs([cell1, cell2], include_timestamp=True)
|
||
|
[(b'val1', 1456361486255), (b'val2', 1456361491927)]
|
||
|
|
||
|
:type cells: list
|
||
|
:param cells: List of :class:`gcloud.bigtable.row_data.Cell` returned
|
||
|
from a read request.
|
||
|
|
||
|
:type include_timestamp: bool
|
||
|
:param include_timestamp: Flag to indicate if cell timestamps should be
|
||
|
included with the output.
|
||
|
|
||
|
:rtype: list
|
||
|
:returns: List of values in the cell. If ``include_timestamp=True``, each
|
||
|
value will be a pair, with the first part the bytes value in
|
||
|
the cell and the second part the number of milliseconds in the
|
||
|
timestamp on the cell.
|
||
|
"""
|
||
|
result = []
|
||
|
for cell in cells:
|
||
|
if include_timestamp:
|
||
|
ts_millis = _microseconds_from_datetime(cell.timestamp) // 1000
|
||
|
result.append((cell.value, ts_millis))
|
||
|
else:
|
||
|
result.append(cell.value)
|
||
|
return result
|
||
|
|
||
|
|
||
|
def _partial_row_to_dict(partial_row_data, include_timestamp=False):
|
||
|
"""Convert a low-level row data object to a dictionary.
|
||
|
|
||
|
Assumes only the latest value in each row is needed. This assumption
|
||
|
is due to the fact that this method is used by callers which use
|
||
|
a ``CellsColumnLimitFilter(1)`` filter.
|
||
|
|
||
|
For example::
|
||
|
|
||
|
>>> import datetime
|
||
|
>>> from gcloud.bigtable.row_data import Cell, PartialRowData
|
||
|
>>> cell1 = Cell(b'val1', datetime.datetime.utcnow())
|
||
|
>>> cell2 = Cell(b'val2', datetime.datetime.utcnow())
|
||
|
>>> row_data = PartialRowData(b'row-key')
|
||
|
>>> _partial_row_to_dict(row_data)
|
||
|
{}
|
||
|
>>> row_data._cells[u'fam1'] = {b'col1': [cell1], b'col2': [cell2]}
|
||
|
>>> _partial_row_to_dict(row_data)
|
||
|
{b'fam1:col2': b'val2', b'fam1:col1': b'val1'}
|
||
|
>>> _partial_row_to_dict(row_data, include_timestamp=True)
|
||
|
{b'fam1:col2': (b'val2', 1456361724480),
|
||
|
b'fam1:col1': (b'val1', 1456361721135)}
|
||
|
|
||
|
:type partial_row_data: :class:`.row_data.PartialRowData`
|
||
|
:param partial_row_data: Row data consumed from a stream.
|
||
|
|
||
|
:type include_timestamp: bool
|
||
|
:param include_timestamp: Flag to indicate if cell timestamps should be
|
||
|
included with the output.
|
||
|
|
||
|
:rtype: dict
|
||
|
:returns: The row data converted to a dictionary.
|
||
|
"""
|
||
|
result = {}
|
||
|
for column, cells in six.iteritems(partial_row_data.to_dict()):
|
||
|
cell_vals = _cells_to_pairs(cells,
|
||
|
include_timestamp=include_timestamp)
|
||
|
# NOTE: We assume there is exactly 1 version since we used that in
|
||
|
# our filter, but we don't check this.
|
||
|
result[column] = cell_vals[0]
|
||
|
return result
|
||
|
|
||
|
|
||
|
def _filter_chain_helper(column=None, versions=None, timestamp=None,
|
||
|
filters=None):
|
||
|
"""Create filter chain to limit a results set.
|
||
|
|
||
|
:type column: str
|
||
|
:param column: (Optional) The column (``fam:col``) to be selected
|
||
|
with the filter.
|
||
|
|
||
|
:type versions: int
|
||
|
:param versions: (Optional) The maximum number of cells to return.
|
||
|
|
||
|
:type timestamp: int
|
||
|
:param timestamp: (Optional) Timestamp (in milliseconds since the
|
||
|
epoch). If specified, only cells returned before (or
|
||
|
at) the timestamp will be matched.
|
||
|
|
||
|
:type filters: list
|
||
|
:param filters: (Optional) List of existing filters to be extended.
|
||
|
|
||
|
:rtype: :class:`RowFilter <gcloud.bigtable.row.RowFilter>`
|
||
|
:returns: The chained filter created, or just a single filter if only
|
||
|
one was needed.
|
||
|
:raises: :class:`ValueError <exceptions.ValueError>` if there are no
|
||
|
filters to chain.
|
||
|
"""
|
||
|
if filters is None:
|
||
|
filters = []
|
||
|
|
||
|
if column is not None:
|
||
|
if isinstance(column, six.binary_type):
|
||
|
column = column.decode('utf-8')
|
||
|
column_family_id, column_qualifier = column.split(':')
|
||
|
fam_filter = FamilyNameRegexFilter(column_family_id)
|
||
|
qual_filter = ColumnQualifierRegexFilter(column_qualifier)
|
||
|
filters.extend([fam_filter, qual_filter])
|
||
|
if versions is not None:
|
||
|
filters.append(CellsColumnLimitFilter(versions))
|
||
|
time_range = _convert_to_time_range(timestamp=timestamp)
|
||
|
if time_range is not None:
|
||
|
filters.append(TimestampRangeFilter(time_range))
|
||
|
|
||
|
num_filters = len(filters)
|
||
|
if num_filters == 0:
|
||
|
raise ValueError('Must have at least one filter.')
|
||
|
elif num_filters == 1:
|
||
|
return filters[0]
|
||
|
else:
|
||
|
return RowFilterChain(filters=filters)
|
||
|
|
||
|
|
||
|
def _scan_filter_helper(row_start, row_stop, row_prefix, columns,
|
||
|
timestamp, limit, kwargs):
|
||
|
"""Helper for :meth:`scan`: build up a filter chain."""
|
||
|
filter_ = kwargs.pop('filter', None)
|
||
|
legacy_args = []
|
||
|
for kw_name in ('batch_size', 'scan_batching', 'sorted_columns'):
|
||
|
if kw_name in kwargs:
|
||
|
legacy_args.append(kw_name)
|
||
|
kwargs.pop(kw_name)
|
||
|
if legacy_args:
|
||
|
legacy_args = ', '.join(legacy_args)
|
||
|
message = ('The HappyBase legacy arguments %s were used. These '
|
||
|
'arguments are unused by gcloud.' % (legacy_args,))
|
||
|
_WARN(message)
|
||
|
if kwargs:
|
||
|
raise TypeError('Received unexpected arguments', kwargs.keys())
|
||
|
|
||
|
if limit is not None and limit < 1:
|
||
|
raise ValueError('limit must be positive')
|
||
|
if row_prefix is not None:
|
||
|
if row_start is not None or row_stop is not None:
|
||
|
raise ValueError('row_prefix cannot be combined with '
|
||
|
'row_start or row_stop')
|
||
|
row_start = row_prefix
|
||
|
row_stop = _string_successor(row_prefix)
|
||
|
|
||
|
filters = []
|
||
|
if isinstance(filter_, six.string_types):
|
||
|
raise TypeError('Specifying filters as a string is not supported '
|
||
|
'by Cloud Bigtable. Use a '
|
||
|
'gcloud.bigtable.row.RowFilter instead.')
|
||
|
elif filter_ is not None:
|
||
|
filters.append(filter_)
|
||
|
|
||
|
if columns is not None:
|
||
|
filters.append(_columns_filter_helper(columns))
|
||
|
|
||
|
# versions == 1 since we only want the latest.
|
||
|
filter_ = _filter_chain_helper(versions=1, timestamp=timestamp,
|
||
|
filters=filters)
|
||
|
return row_start, row_stop, filter_
|
||
|
|
||
|
|
||
|
def _columns_filter_helper(columns):
|
||
|
"""Creates a union filter for a list of columns.
|
||
|
|
||
|
:type columns: list
|
||
|
:param columns: Iterable containing column names (as strings). Each column
|
||
|
name can be either
|
||
|
|
||
|
* an entire column family: ``fam`` or ``fam:``
|
||
|
* a single column: ``fam:col``
|
||
|
|
||
|
:rtype: :class:`RowFilter <gcloud.bigtable.row.RowFilter>`
|
||
|
:returns: The union filter created containing all of the matched columns.
|
||
|
:raises: :class:`ValueError <exceptions.ValueError>` if there are no
|
||
|
filters to union.
|
||
|
"""
|
||
|
filters = []
|
||
|
for column_family_id, column_qualifier in _get_column_pairs(columns):
|
||
|
fam_filter = FamilyNameRegexFilter(column_family_id)
|
||
|
if column_qualifier is not None:
|
||
|
qual_filter = ColumnQualifierRegexFilter(column_qualifier)
|
||
|
combined_filter = RowFilterChain(
|
||
|
filters=[fam_filter, qual_filter])
|
||
|
filters.append(combined_filter)
|
||
|
else:
|
||
|
filters.append(fam_filter)
|
||
|
|
||
|
num_filters = len(filters)
|
||
|
if num_filters == 0:
|
||
|
raise ValueError('Must have at least one filter.')
|
||
|
elif num_filters == 1:
|
||
|
return filters[0]
|
||
|
else:
|
||
|
return RowFilterUnion(filters=filters)
|
||
|
|
||
|
|
||
|
def _row_keys_filter_helper(row_keys):
|
||
|
"""Creates a union filter for a list of rows.
|
||
|
|
||
|
:type row_keys: list
|
||
|
:param row_keys: Iterable containing row keys (as strings).
|
||
|
|
||
|
:rtype: :class:`RowFilter <gcloud.bigtable.row.RowFilter>`
|
||
|
:returns: The union filter created containing all of the row keys.
|
||
|
:raises: :class:`ValueError <exceptions.ValueError>` if there are no
|
||
|
filters to union.
|
||
|
"""
|
||
|
filters = []
|
||
|
for row_key in row_keys:
|
||
|
filters.append(RowKeyRegexFilter(row_key))
|
||
|
|
||
|
num_filters = len(filters)
|
||
|
if num_filters == 0:
|
||
|
raise ValueError('Must have at least one filter.')
|
||
|
elif num_filters == 1:
|
||
|
return filters[0]
|
||
|
else:
|
||
|
return RowFilterUnion(filters=filters)
|