Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/sklearn/cluster/tests/test_feature_agglomeration.py

44 lines
1.7 KiB
Python
Raw Normal View History

2020-11-12 11:05:57 -05:00
"""
Tests for sklearn.cluster._feature_agglomeration
"""
# Authors: Sergul Aydore 2017
import numpy as np
from sklearn.cluster import FeatureAgglomeration
from sklearn.utils._testing import assert_no_warnings
from sklearn.utils._testing import assert_array_almost_equal
def test_feature_agglomeration():
n_clusters = 1
X = np.array([0, 0, 1]).reshape(1, 3) # (n_samples, n_features)
agglo_mean = FeatureAgglomeration(n_clusters=n_clusters,
pooling_func=np.mean)
agglo_median = FeatureAgglomeration(n_clusters=n_clusters,
pooling_func=np.median)
assert_no_warnings(agglo_mean.fit, X)
assert_no_warnings(agglo_median.fit, X)
assert np.size(np.unique(agglo_mean.labels_)) == n_clusters
assert np.size(np.unique(agglo_median.labels_)) == n_clusters
assert np.size(agglo_mean.labels_) == X.shape[1]
assert np.size(agglo_median.labels_) == X.shape[1]
# Test transform
Xt_mean = agglo_mean.transform(X)
Xt_median = agglo_median.transform(X)
assert Xt_mean.shape[1] == n_clusters
assert Xt_median.shape[1] == n_clusters
assert Xt_mean == np.array([1 / 3.])
assert Xt_median == np.array([0.])
# Test inverse transform
X_full_mean = agglo_mean.inverse_transform(Xt_mean)
X_full_median = agglo_median.inverse_transform(Xt_median)
assert np.unique(X_full_mean[0]).size == n_clusters
assert np.unique(X_full_median[0]).size == n_clusters
assert_array_almost_equal(agglo_mean.transform(X_full_mean),
Xt_mean)
assert_array_almost_equal(agglo_median.transform(X_full_median),
Xt_median)