77 lines
2.3 KiB
Python
77 lines
2.3 KiB
Python
|
import numpy as np
|
||
|
from scipy import sparse as sp
|
||
|
|
||
|
import pytest
|
||
|
|
||
|
from sklearn.svm._bounds import l1_min_c
|
||
|
from sklearn.svm import LinearSVC
|
||
|
from sklearn.linear_model import LogisticRegression
|
||
|
|
||
|
from sklearn.utils._testing import assert_raise_message
|
||
|
|
||
|
|
||
|
dense_X = [[-1, 0], [0, 1], [1, 1], [1, 1]]
|
||
|
sparse_X = sp.csr_matrix(dense_X)
|
||
|
|
||
|
Y1 = [0, 1, 1, 1]
|
||
|
Y2 = [2, 1, 0, 0]
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('loss', ['squared_hinge', 'log'])
|
||
|
@pytest.mark.parametrize('X_label', ['sparse', 'dense'])
|
||
|
@pytest.mark.parametrize('Y_label', ['two-classes', 'multi-class'])
|
||
|
@pytest.mark.parametrize('intercept_label', ['no-intercept', 'fit-intercept'])
|
||
|
def test_l1_min_c(loss, X_label, Y_label, intercept_label):
|
||
|
Xs = {'sparse': sparse_X, 'dense': dense_X}
|
||
|
Ys = {'two-classes': Y1, 'multi-class': Y2}
|
||
|
intercepts = {'no-intercept': {'fit_intercept': False},
|
||
|
'fit-intercept': {'fit_intercept': True,
|
||
|
'intercept_scaling': 10}}
|
||
|
|
||
|
X = Xs[X_label]
|
||
|
Y = Ys[Y_label]
|
||
|
intercept_params = intercepts[intercept_label]
|
||
|
check_l1_min_c(X, Y, loss, **intercept_params)
|
||
|
|
||
|
|
||
|
def test_l1_min_c_l2_loss():
|
||
|
# loss='l2' should raise ValueError
|
||
|
assert_raise_message(ValueError, "loss type not in",
|
||
|
l1_min_c, dense_X, Y1, loss="l2")
|
||
|
|
||
|
|
||
|
def check_l1_min_c(X, y, loss, fit_intercept=True, intercept_scaling=None):
|
||
|
min_c = l1_min_c(X, y, loss=loss, fit_intercept=fit_intercept,
|
||
|
intercept_scaling=intercept_scaling)
|
||
|
|
||
|
clf = {
|
||
|
'log': LogisticRegression(penalty='l1', solver='liblinear'),
|
||
|
'squared_hinge': LinearSVC(loss='squared_hinge',
|
||
|
penalty='l1', dual=False),
|
||
|
}[loss]
|
||
|
|
||
|
clf.fit_intercept = fit_intercept
|
||
|
clf.intercept_scaling = intercept_scaling
|
||
|
|
||
|
clf.C = min_c
|
||
|
clf.fit(X, y)
|
||
|
assert (np.asarray(clf.coef_) == 0).all()
|
||
|
assert (np.asarray(clf.intercept_) == 0).all()
|
||
|
|
||
|
clf.C = min_c * 1.01
|
||
|
clf.fit(X, y)
|
||
|
assert ((np.asarray(clf.coef_) != 0).any() or
|
||
|
(np.asarray(clf.intercept_) != 0).any())
|
||
|
|
||
|
|
||
|
def test_ill_posed_min_c():
|
||
|
X = [[0, 0], [0, 0]]
|
||
|
y = [0, 1]
|
||
|
with pytest.raises(ValueError):
|
||
|
l1_min_c(X, y)
|
||
|
|
||
|
|
||
|
def test_unsupported_loss():
|
||
|
with pytest.raises(ValueError):
|
||
|
l1_min_c(dense_X, Y1, loss='l1')
|