Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/sklearn/impute/tests/test_common.py

116 lines
4.1 KiB
Python
Raw Normal View History

2020-11-12 16:05:57 +00:00
import pytest
import numpy as np
from scipy import sparse
from sklearn.utils._testing import assert_allclose
from sklearn.utils._testing import assert_allclose_dense_sparse
from sklearn.utils._testing import assert_array_equal
from sklearn.experimental import enable_iterative_imputer # noqa
from sklearn.impute import IterativeImputer
from sklearn.impute import KNNImputer
from sklearn.impute import SimpleImputer
IMPUTERS = [IterativeImputer(), KNNImputer(), SimpleImputer()]
SPARSE_IMPUTERS = [SimpleImputer()]
# ConvergenceWarning will be raised by the IterativeImputer
@pytest.mark.filterwarnings("ignore::sklearn.exceptions.ConvergenceWarning")
@pytest.mark.parametrize("imputer", IMPUTERS)
def test_imputation_missing_value_in_test_array(imputer):
# [Non Regression Test for issue #13968] Missing value in test set should
# not throw an error and return a finite dataset
train = [[1], [2]]
test = [[3], [np.nan]]
imputer.set_params(add_indicator=True)
imputer.fit(train).transform(test)
# ConvergenceWarning will be raised by the IterativeImputer
@pytest.mark.filterwarnings("ignore::sklearn.exceptions.ConvergenceWarning")
@pytest.mark.parametrize("marker", [np.nan, -1, 0])
@pytest.mark.parametrize("imputer", IMPUTERS)
def test_imputers_add_indicator(marker, imputer):
X = np.array([
[marker, 1, 5, marker, 1],
[2, marker, 1, marker, 2],
[6, 3, marker, marker, 3],
[1, 2, 9, marker, 4]
])
X_true_indicator = np.array([
[1., 0., 0., 1.],
[0., 1., 0., 1.],
[0., 0., 1., 1.],
[0., 0., 0., 1.]
])
imputer.set_params(missing_values=marker, add_indicator=True)
X_trans = imputer.fit_transform(X)
assert_allclose(X_trans[:, -4:], X_true_indicator)
assert_array_equal(imputer.indicator_.features_, np.array([0, 1, 2, 3]))
imputer.set_params(add_indicator=False)
X_trans_no_indicator = imputer.fit_transform(X)
assert_allclose(X_trans[:, :-4], X_trans_no_indicator)
# ConvergenceWarning will be raised by the IterativeImputer
@pytest.mark.filterwarnings("ignore::sklearn.exceptions.ConvergenceWarning")
@pytest.mark.parametrize("marker", [np.nan, -1])
@pytest.mark.parametrize("imputer", SPARSE_IMPUTERS)
def test_imputers_add_indicator_sparse(imputer, marker):
X = sparse.csr_matrix([
[marker, 1, 5, marker, 1],
[2, marker, 1, marker, 2],
[6, 3, marker, marker, 3],
[1, 2, 9, marker, 4]
])
X_true_indicator = sparse.csr_matrix([
[1., 0., 0., 1.],
[0., 1., 0., 1.],
[0., 0., 1., 1.],
[0., 0., 0., 1.]
])
imputer.set_params(missing_values=marker, add_indicator=True)
X_trans = imputer.fit_transform(X)
assert_allclose_dense_sparse(X_trans[:, -4:], X_true_indicator)
assert_array_equal(imputer.indicator_.features_, np.array([0, 1, 2, 3]))
imputer.set_params(add_indicator=False)
X_trans_no_indicator = imputer.fit_transform(X)
assert_allclose_dense_sparse(X_trans[:, :-4], X_trans_no_indicator)
# ConvergenceWarning will be raised by the IterativeImputer
@pytest.mark.filterwarnings("ignore::sklearn.exceptions.ConvergenceWarning")
@pytest.mark.parametrize("imputer", IMPUTERS)
@pytest.mark.parametrize("add_indicator", [True, False])
def test_imputers_pandas_na_integer_array_support(imputer, add_indicator):
# Test pandas IntegerArray with pd.NA
pd = pytest.importorskip('pandas', minversion="1.0")
marker = np.nan
imputer = imputer.set_params(add_indicator=add_indicator,
missing_values=marker)
X = np.array([
[marker, 1, 5, marker, 1],
[2, marker, 1, marker, 2],
[6, 3, marker, marker, 3],
[1, 2, 9, marker, 4]
])
# fit on numpy array
X_trans_expected = imputer.fit_transform(X)
# Creates dataframe with IntegerArrays with pd.NA
X_df = pd.DataFrame(X, dtype="Int16", columns=["a", "b", "c", "d", "e"])
# fit on pandas dataframe with IntegerArrays
X_trans = imputer.fit_transform(X_df)
assert_allclose(X_trans_expected, X_trans)