302 lines
9.8 KiB
Python
302 lines
9.8 KiB
Python
|
"""
|
||
|
Test the fastica algorithm.
|
||
|
"""
|
||
|
import itertools
|
||
|
import warnings
|
||
|
import pytest
|
||
|
|
||
|
import numpy as np
|
||
|
from scipy import stats
|
||
|
|
||
|
from sklearn.utils._testing import assert_almost_equal
|
||
|
from sklearn.utils._testing import assert_array_almost_equal
|
||
|
from sklearn.utils._testing import assert_warns
|
||
|
|
||
|
from sklearn.decomposition import FastICA, fastica, PCA
|
||
|
from sklearn.decomposition._fastica import _gs_decorrelation
|
||
|
from sklearn.exceptions import ConvergenceWarning
|
||
|
|
||
|
|
||
|
def center_and_norm(x, axis=-1):
|
||
|
""" Centers and norms x **in place**
|
||
|
|
||
|
Parameters
|
||
|
-----------
|
||
|
x: ndarray
|
||
|
Array with an axis of observations (statistical units) measured on
|
||
|
random variables.
|
||
|
axis: int, optional
|
||
|
Axis along which the mean and variance are calculated.
|
||
|
"""
|
||
|
x = np.rollaxis(x, axis)
|
||
|
x -= x.mean(axis=0)
|
||
|
x /= x.std(axis=0)
|
||
|
|
||
|
|
||
|
def test_gs():
|
||
|
# Test gram schmidt orthonormalization
|
||
|
# generate a random orthogonal matrix
|
||
|
rng = np.random.RandomState(0)
|
||
|
W, _, _ = np.linalg.svd(rng.randn(10, 10))
|
||
|
w = rng.randn(10)
|
||
|
_gs_decorrelation(w, W, 10)
|
||
|
assert (w ** 2).sum() < 1.e-10
|
||
|
w = rng.randn(10)
|
||
|
u = _gs_decorrelation(w, W, 5)
|
||
|
tmp = np.dot(u, W.T)
|
||
|
assert (tmp[:5] ** 2).sum() < 1.e-10
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("add_noise", [True, False])
|
||
|
@pytest.mark.parametrize("seed", range(1))
|
||
|
def test_fastica_simple(add_noise, seed):
|
||
|
# Test the FastICA algorithm on very simple data.
|
||
|
rng = np.random.RandomState(seed)
|
||
|
# scipy.stats uses the global RNG:
|
||
|
n_samples = 1000
|
||
|
# Generate two sources:
|
||
|
s1 = (2 * np.sin(np.linspace(0, 100, n_samples)) > 0) - 1
|
||
|
s2 = stats.t.rvs(1, size=n_samples)
|
||
|
s = np.c_[s1, s2].T
|
||
|
center_and_norm(s)
|
||
|
s1, s2 = s
|
||
|
|
||
|
# Mixing angle
|
||
|
phi = 0.6
|
||
|
mixing = np.array([[np.cos(phi), np.sin(phi)],
|
||
|
[np.sin(phi), -np.cos(phi)]])
|
||
|
m = np.dot(mixing, s)
|
||
|
|
||
|
if add_noise:
|
||
|
m += 0.1 * rng.randn(2, 1000)
|
||
|
|
||
|
center_and_norm(m)
|
||
|
|
||
|
# function as fun arg
|
||
|
def g_test(x):
|
||
|
return x ** 3, (3 * x ** 2).mean(axis=-1)
|
||
|
|
||
|
algos = ['parallel', 'deflation']
|
||
|
nls = ['logcosh', 'exp', 'cube', g_test]
|
||
|
whitening = [True, False]
|
||
|
for algo, nl, whiten in itertools.product(algos, nls, whitening):
|
||
|
if whiten:
|
||
|
k_, mixing_, s_ = fastica(m.T, fun=nl, algorithm=algo,
|
||
|
random_state=rng)
|
||
|
with pytest.raises(ValueError):
|
||
|
fastica(m.T, fun=np.tanh, algorithm=algo)
|
||
|
else:
|
||
|
pca = PCA(n_components=2, whiten=True, random_state=rng)
|
||
|
X = pca.fit_transform(m.T)
|
||
|
k_, mixing_, s_ = fastica(X, fun=nl, algorithm=algo, whiten=False,
|
||
|
random_state=rng)
|
||
|
with pytest.raises(ValueError):
|
||
|
fastica(X, fun=np.tanh, algorithm=algo)
|
||
|
s_ = s_.T
|
||
|
# Check that the mixing model described in the docstring holds:
|
||
|
if whiten:
|
||
|
assert_almost_equal(s_, np.dot(np.dot(mixing_, k_), m))
|
||
|
|
||
|
center_and_norm(s_)
|
||
|
s1_, s2_ = s_
|
||
|
# Check to see if the sources have been estimated
|
||
|
# in the wrong order
|
||
|
if abs(np.dot(s1_, s2)) > abs(np.dot(s1_, s1)):
|
||
|
s2_, s1_ = s_
|
||
|
s1_ *= np.sign(np.dot(s1_, s1))
|
||
|
s2_ *= np.sign(np.dot(s2_, s2))
|
||
|
|
||
|
# Check that we have estimated the original sources
|
||
|
if not add_noise:
|
||
|
assert_almost_equal(np.dot(s1_, s1) / n_samples, 1, decimal=2)
|
||
|
assert_almost_equal(np.dot(s2_, s2) / n_samples, 1, decimal=2)
|
||
|
else:
|
||
|
assert_almost_equal(np.dot(s1_, s1) / n_samples, 1, decimal=1)
|
||
|
assert_almost_equal(np.dot(s2_, s2) / n_samples, 1, decimal=1)
|
||
|
|
||
|
# Test FastICA class
|
||
|
_, _, sources_fun = fastica(m.T, fun=nl, algorithm=algo,
|
||
|
random_state=seed)
|
||
|
ica = FastICA(fun=nl, algorithm=algo, random_state=seed)
|
||
|
sources = ica.fit_transform(m.T)
|
||
|
assert ica.components_.shape == (2, 2)
|
||
|
assert sources.shape == (1000, 2)
|
||
|
|
||
|
assert_array_almost_equal(sources_fun, sources)
|
||
|
assert_array_almost_equal(sources, ica.transform(m.T))
|
||
|
|
||
|
assert ica.mixing_.shape == (2, 2)
|
||
|
|
||
|
for fn in [np.tanh, "exp(-.5(x^2))"]:
|
||
|
ica = FastICA(fun=fn, algorithm=algo)
|
||
|
with pytest.raises(ValueError):
|
||
|
ica.fit(m.T)
|
||
|
|
||
|
with pytest.raises(TypeError):
|
||
|
FastICA(fun=range(10)).fit(m.T)
|
||
|
|
||
|
|
||
|
def test_fastica_nowhiten():
|
||
|
m = [[0, 1], [1, 0]]
|
||
|
|
||
|
# test for issue #697
|
||
|
ica = FastICA(n_components=1, whiten=False, random_state=0)
|
||
|
assert_warns(UserWarning, ica.fit, m)
|
||
|
assert hasattr(ica, 'mixing_')
|
||
|
|
||
|
|
||
|
def test_fastica_convergence_fail():
|
||
|
# Test the FastICA algorithm on very simple data
|
||
|
# (see test_non_square_fastica).
|
||
|
# Ensure a ConvergenceWarning raised if the tolerance is sufficiently low.
|
||
|
rng = np.random.RandomState(0)
|
||
|
|
||
|
n_samples = 1000
|
||
|
# Generate two sources:
|
||
|
t = np.linspace(0, 100, n_samples)
|
||
|
s1 = np.sin(t)
|
||
|
s2 = np.ceil(np.sin(np.pi * t))
|
||
|
s = np.c_[s1, s2].T
|
||
|
center_and_norm(s)
|
||
|
|
||
|
# Mixing matrix
|
||
|
mixing = rng.randn(6, 2)
|
||
|
m = np.dot(mixing, s)
|
||
|
|
||
|
# Do fastICA with tolerance 0. to ensure failing convergence
|
||
|
ica = FastICA(algorithm="parallel", n_components=2, random_state=rng,
|
||
|
max_iter=2, tol=0.)
|
||
|
assert_warns(ConvergenceWarning, ica.fit, m.T)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('add_noise', [True, False])
|
||
|
def test_non_square_fastica(add_noise):
|
||
|
# Test the FastICA algorithm on very simple data.
|
||
|
rng = np.random.RandomState(0)
|
||
|
|
||
|
n_samples = 1000
|
||
|
# Generate two sources:
|
||
|
t = np.linspace(0, 100, n_samples)
|
||
|
s1 = np.sin(t)
|
||
|
s2 = np.ceil(np.sin(np.pi * t))
|
||
|
s = np.c_[s1, s2].T
|
||
|
center_and_norm(s)
|
||
|
s1, s2 = s
|
||
|
|
||
|
# Mixing matrix
|
||
|
mixing = rng.randn(6, 2)
|
||
|
m = np.dot(mixing, s)
|
||
|
|
||
|
if add_noise:
|
||
|
m += 0.1 * rng.randn(6, n_samples)
|
||
|
|
||
|
center_and_norm(m)
|
||
|
|
||
|
k_, mixing_, s_ = fastica(m.T, n_components=2, random_state=rng)
|
||
|
s_ = s_.T
|
||
|
|
||
|
# Check that the mixing model described in the docstring holds:
|
||
|
assert_almost_equal(s_, np.dot(np.dot(mixing_, k_), m))
|
||
|
|
||
|
center_and_norm(s_)
|
||
|
s1_, s2_ = s_
|
||
|
# Check to see if the sources have been estimated
|
||
|
# in the wrong order
|
||
|
if abs(np.dot(s1_, s2)) > abs(np.dot(s1_, s1)):
|
||
|
s2_, s1_ = s_
|
||
|
s1_ *= np.sign(np.dot(s1_, s1))
|
||
|
s2_ *= np.sign(np.dot(s2_, s2))
|
||
|
|
||
|
# Check that we have estimated the original sources
|
||
|
if not add_noise:
|
||
|
assert_almost_equal(np.dot(s1_, s1) / n_samples, 1, decimal=3)
|
||
|
assert_almost_equal(np.dot(s2_, s2) / n_samples, 1, decimal=3)
|
||
|
|
||
|
|
||
|
def test_fit_transform():
|
||
|
# Test FastICA.fit_transform
|
||
|
rng = np.random.RandomState(0)
|
||
|
X = rng.random_sample((100, 10))
|
||
|
for whiten, n_components in [[True, 5], [False, None]]:
|
||
|
n_components_ = (n_components if n_components is not None else
|
||
|
X.shape[1])
|
||
|
|
||
|
ica = FastICA(n_components=n_components, whiten=whiten, random_state=0)
|
||
|
Xt = ica.fit_transform(X)
|
||
|
assert ica.components_.shape == (n_components_, 10)
|
||
|
assert Xt.shape == (100, n_components_)
|
||
|
|
||
|
ica = FastICA(n_components=n_components, whiten=whiten, random_state=0)
|
||
|
ica.fit(X)
|
||
|
assert ica.components_.shape == (n_components_, 10)
|
||
|
Xt2 = ica.transform(X)
|
||
|
|
||
|
assert_array_almost_equal(Xt, Xt2)
|
||
|
|
||
|
|
||
|
def test_inverse_transform():
|
||
|
# Test FastICA.inverse_transform
|
||
|
n_features = 10
|
||
|
n_samples = 100
|
||
|
n1, n2 = 5, 10
|
||
|
rng = np.random.RandomState(0)
|
||
|
X = rng.random_sample((n_samples, n_features))
|
||
|
expected = {(True, n1): (n_features, n1),
|
||
|
(True, n2): (n_features, n2),
|
||
|
(False, n1): (n_features, n2),
|
||
|
(False, n2): (n_features, n2)}
|
||
|
for whiten in [True, False]:
|
||
|
for n_components in [n1, n2]:
|
||
|
n_components_ = (n_components if n_components is not None else
|
||
|
X.shape[1])
|
||
|
ica = FastICA(n_components=n_components, random_state=rng,
|
||
|
whiten=whiten)
|
||
|
with warnings.catch_warnings(record=True):
|
||
|
# catch "n_components ignored" warning
|
||
|
Xt = ica.fit_transform(X)
|
||
|
expected_shape = expected[(whiten, n_components_)]
|
||
|
assert ica.mixing_.shape == expected_shape
|
||
|
X2 = ica.inverse_transform(Xt)
|
||
|
assert X.shape == X2.shape
|
||
|
|
||
|
# reversibility test in non-reduction case
|
||
|
if n_components == X.shape[1]:
|
||
|
assert_array_almost_equal(X, X2)
|
||
|
|
||
|
|
||
|
def test_fastica_errors():
|
||
|
n_features = 3
|
||
|
n_samples = 10
|
||
|
rng = np.random.RandomState(0)
|
||
|
X = rng.random_sample((n_samples, n_features))
|
||
|
w_init = rng.randn(n_features + 1, n_features + 1)
|
||
|
with pytest.raises(ValueError, match='max_iter should be greater than 1'):
|
||
|
FastICA(max_iter=0)
|
||
|
with pytest.raises(ValueError, match=r'alpha must be in \[1,2\]'):
|
||
|
fastica(X, fun_args={'alpha': 0})
|
||
|
with pytest.raises(ValueError, match='w_init has invalid shape.+'
|
||
|
r'should be \(3L?, 3L?\)'):
|
||
|
fastica(X, w_init=w_init)
|
||
|
with pytest.raises(ValueError, match='Invalid algorithm.+must '
|
||
|
'be.+parallel.+or.+deflation'):
|
||
|
fastica(X, algorithm='pizza')
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('whiten', [True, False])
|
||
|
@pytest.mark.parametrize('return_X_mean', [True, False])
|
||
|
@pytest.mark.parametrize('return_n_iter', [True, False])
|
||
|
def test_fastica_output_shape(whiten, return_X_mean, return_n_iter):
|
||
|
n_features = 3
|
||
|
n_samples = 10
|
||
|
rng = np.random.RandomState(0)
|
||
|
X = rng.random_sample((n_samples, n_features))
|
||
|
|
||
|
expected_len = 3 + return_X_mean + return_n_iter
|
||
|
|
||
|
out = fastica(X, whiten=whiten, return_n_iter=return_n_iter,
|
||
|
return_X_mean=return_X_mean)
|
||
|
|
||
|
assert len(out) == expected_len
|
||
|
if not whiten:
|
||
|
assert out[0] is None
|