195 lines
6.6 KiB
Python
195 lines
6.6 KiB
Python
|
"""
|
||
|
Testing for mean shift clustering methods
|
||
|
|
||
|
"""
|
||
|
|
||
|
import numpy as np
|
||
|
import warnings
|
||
|
import pytest
|
||
|
|
||
|
from scipy import sparse
|
||
|
|
||
|
from sklearn.utils._testing import assert_array_equal
|
||
|
from sklearn.utils._testing import assert_array_almost_equal
|
||
|
from sklearn.utils._testing import assert_raise_message
|
||
|
from sklearn.utils._testing import assert_allclose
|
||
|
|
||
|
from sklearn.cluster import MeanShift
|
||
|
from sklearn.cluster import mean_shift
|
||
|
from sklearn.cluster import estimate_bandwidth
|
||
|
from sklearn.cluster import get_bin_seeds
|
||
|
from sklearn.datasets import make_blobs
|
||
|
from sklearn.metrics import v_measure_score
|
||
|
|
||
|
|
||
|
n_clusters = 3
|
||
|
centers = np.array([[1, 1], [-1, -1], [1, -1]]) + 10
|
||
|
X, _ = make_blobs(n_samples=300, n_features=2, centers=centers,
|
||
|
cluster_std=0.4, shuffle=True, random_state=11)
|
||
|
|
||
|
|
||
|
def test_estimate_bandwidth():
|
||
|
# Test estimate_bandwidth
|
||
|
bandwidth = estimate_bandwidth(X, n_samples=200)
|
||
|
assert 0.9 <= bandwidth <= 1.5
|
||
|
|
||
|
|
||
|
def test_estimate_bandwidth_1sample():
|
||
|
# Test estimate_bandwidth when n_samples=1 and quantile<1, so that
|
||
|
# n_neighbors is set to 1.
|
||
|
bandwidth = estimate_bandwidth(X, n_samples=1, quantile=0.3)
|
||
|
assert bandwidth == pytest.approx(0., abs=1e-5)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("bandwidth, cluster_all, expected, "
|
||
|
"first_cluster_label",
|
||
|
[(1.2, True, 3, 0), (1.2, False, 4, -1)])
|
||
|
def test_mean_shift(bandwidth, cluster_all, expected, first_cluster_label):
|
||
|
# Test MeanShift algorithm
|
||
|
ms = MeanShift(bandwidth=bandwidth, cluster_all=cluster_all)
|
||
|
labels = ms.fit(X).labels_
|
||
|
labels_unique = np.unique(labels)
|
||
|
n_clusters_ = len(labels_unique)
|
||
|
assert n_clusters_ == expected
|
||
|
assert labels_unique[0] == first_cluster_label
|
||
|
|
||
|
cluster_centers, labels_mean_shift = mean_shift(X, cluster_all=cluster_all)
|
||
|
labels_mean_shift_unique = np.unique(labels_mean_shift)
|
||
|
n_clusters_mean_shift = len(labels_mean_shift_unique)
|
||
|
assert n_clusters_mean_shift == expected
|
||
|
assert labels_mean_shift_unique[0] == first_cluster_label
|
||
|
|
||
|
|
||
|
def test_mean_shift_negative_bandwidth():
|
||
|
bandwidth = -1
|
||
|
ms = MeanShift(bandwidth=bandwidth)
|
||
|
msg = (r"bandwidth needs to be greater than zero or None,"
|
||
|
r" got -1\.000000")
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
ms.fit(X)
|
||
|
|
||
|
|
||
|
def test_estimate_bandwidth_with_sparse_matrix():
|
||
|
# Test estimate_bandwidth with sparse matrix
|
||
|
X = sparse.lil_matrix((1000, 1000))
|
||
|
msg = "A sparse matrix was passed, but dense data is required."
|
||
|
assert_raise_message(TypeError, msg, estimate_bandwidth, X)
|
||
|
|
||
|
|
||
|
def test_parallel():
|
||
|
centers = np.array([[1, 1], [-1, -1], [1, -1]]) + 10
|
||
|
X, _ = make_blobs(n_samples=50, n_features=2, centers=centers,
|
||
|
cluster_std=0.4, shuffle=True, random_state=11)
|
||
|
|
||
|
ms1 = MeanShift(n_jobs=2)
|
||
|
ms1.fit(X)
|
||
|
|
||
|
ms2 = MeanShift()
|
||
|
ms2.fit(X)
|
||
|
|
||
|
assert_array_almost_equal(ms1.cluster_centers_, ms2.cluster_centers_)
|
||
|
assert_array_equal(ms1.labels_, ms2.labels_)
|
||
|
|
||
|
|
||
|
def test_meanshift_predict():
|
||
|
# Test MeanShift.predict
|
||
|
ms = MeanShift(bandwidth=1.2)
|
||
|
labels = ms.fit_predict(X)
|
||
|
labels2 = ms.predict(X)
|
||
|
assert_array_equal(labels, labels2)
|
||
|
|
||
|
|
||
|
def test_meanshift_all_orphans():
|
||
|
# init away from the data, crash with a sensible warning
|
||
|
ms = MeanShift(bandwidth=0.1, seeds=[[-9, -9], [-10, -10]])
|
||
|
msg = "No point was within bandwidth=0.1"
|
||
|
assert_raise_message(ValueError, msg, ms.fit, X,)
|
||
|
|
||
|
|
||
|
def test_unfitted():
|
||
|
# Non-regression: before fit, there should be not fitted attributes.
|
||
|
ms = MeanShift()
|
||
|
assert not hasattr(ms, "cluster_centers_")
|
||
|
assert not hasattr(ms, "labels_")
|
||
|
|
||
|
|
||
|
def test_cluster_intensity_tie():
|
||
|
X = np.array([[1, 1], [2, 1], [1, 0],
|
||
|
[4, 7], [3, 5], [3, 6]])
|
||
|
c1 = MeanShift(bandwidth=2).fit(X)
|
||
|
|
||
|
X = np.array([[4, 7], [3, 5], [3, 6],
|
||
|
[1, 1], [2, 1], [1, 0]])
|
||
|
c2 = MeanShift(bandwidth=2).fit(X)
|
||
|
assert_array_equal(c1.labels_, [1, 1, 1, 0, 0, 0])
|
||
|
assert_array_equal(c2.labels_, [0, 0, 0, 1, 1, 1])
|
||
|
|
||
|
|
||
|
def test_bin_seeds():
|
||
|
# Test the bin seeding technique which can be used in the mean shift
|
||
|
# algorithm
|
||
|
# Data is just 6 points in the plane
|
||
|
X = np.array([[1., 1.], [1.4, 1.4], [1.8, 1.2],
|
||
|
[2., 1.], [2.1, 1.1], [0., 0.]])
|
||
|
|
||
|
# With a bin coarseness of 1.0 and min_bin_freq of 1, 3 bins should be
|
||
|
# found
|
||
|
ground_truth = {(1., 1.), (2., 1.), (0., 0.)}
|
||
|
test_bins = get_bin_seeds(X, 1, 1)
|
||
|
test_result = set(tuple(p) for p in test_bins)
|
||
|
assert len(ground_truth.symmetric_difference(test_result)) == 0
|
||
|
|
||
|
# With a bin coarseness of 1.0 and min_bin_freq of 2, 2 bins should be
|
||
|
# found
|
||
|
ground_truth = {(1., 1.), (2., 1.)}
|
||
|
test_bins = get_bin_seeds(X, 1, 2)
|
||
|
test_result = set(tuple(p) for p in test_bins)
|
||
|
assert len(ground_truth.symmetric_difference(test_result)) == 0
|
||
|
|
||
|
# With a bin size of 0.01 and min_bin_freq of 1, 6 bins should be found
|
||
|
# we bail and use the whole data here.
|
||
|
with warnings.catch_warnings(record=True):
|
||
|
test_bins = get_bin_seeds(X, 0.01, 1)
|
||
|
assert_array_almost_equal(test_bins, X)
|
||
|
|
||
|
# tight clusters around [0, 0] and [1, 1], only get two bins
|
||
|
X, _ = make_blobs(n_samples=100, n_features=2, centers=[[0, 0], [1, 1]],
|
||
|
cluster_std=0.1, random_state=0)
|
||
|
test_bins = get_bin_seeds(X, 1)
|
||
|
assert_array_equal(test_bins, [[0, 0], [1, 1]])
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('max_iter', [1, 100])
|
||
|
def test_max_iter(max_iter):
|
||
|
clusters1, _ = mean_shift(X, max_iter=max_iter)
|
||
|
ms = MeanShift(max_iter=max_iter).fit(X)
|
||
|
clusters2 = ms.cluster_centers_
|
||
|
|
||
|
assert ms.n_iter_ <= ms.max_iter
|
||
|
assert len(clusters1) == len(clusters2)
|
||
|
|
||
|
for c1, c2 in zip(clusters1, clusters2):
|
||
|
assert np.allclose(c1, c2)
|
||
|
|
||
|
|
||
|
def test_mean_shift_zero_bandwidth():
|
||
|
# Check that mean shift works when the estimated bandwidth is 0.
|
||
|
X = np.array([1, 1, 1, 2, 2, 2, 3, 3]).reshape(-1, 1)
|
||
|
|
||
|
# estimate_bandwidth with default args returns 0 on this dataset
|
||
|
bandwidth = estimate_bandwidth(X)
|
||
|
assert bandwidth == 0
|
||
|
|
||
|
# get_bin_seeds with a 0 bin_size should return the dataset itself
|
||
|
assert get_bin_seeds(X, bin_size=bandwidth) is X
|
||
|
|
||
|
# MeanShift with binning and a 0 estimated bandwidth should be equivalent
|
||
|
# to no binning.
|
||
|
ms_binning = MeanShift(bin_seeding=True, bandwidth=None).fit(X)
|
||
|
ms_nobinning = MeanShift(bin_seeding=False).fit(X)
|
||
|
expected_labels = np.array([0, 0, 0, 1, 1, 1, 2, 2])
|
||
|
|
||
|
assert v_measure_score(ms_binning.labels_, expected_labels) == 1
|
||
|
assert v_measure_score(ms_nobinning.labels_, expected_labels) == 1
|
||
|
assert_allclose(ms_binning.cluster_centers_, ms_nobinning.cluster_centers_)
|