142 lines
4.9 KiB
Python
142 lines
4.9 KiB
Python
|
"""
|
||
|
These tests are originally part of CellProfiler, code licensed under both GPL and BSD licenses.
|
||
|
|
||
|
Website: http://www.cellprofiler.org
|
||
|
Copyright (c) 2003-2009 Massachusetts Institute of Technology
|
||
|
Copyright (c) 2009-2011 Broad Institute
|
||
|
All rights reserved.
|
||
|
Original author: Lee Kamentsky
|
||
|
"""
|
||
|
import numpy as np
|
||
|
|
||
|
from skimage.morphology.greyreconstruct import reconstruction
|
||
|
from skimage._shared import testing
|
||
|
from skimage._shared.testing import assert_array_almost_equal
|
||
|
|
||
|
|
||
|
def test_zeros():
|
||
|
"""Test reconstruction with image and mask of zeros"""
|
||
|
assert_array_almost_equal(
|
||
|
reconstruction(np.zeros((5, 7)), np.zeros((5, 7))), 0)
|
||
|
|
||
|
|
||
|
def test_image_equals_mask():
|
||
|
"""Test reconstruction where the image and mask are the same"""
|
||
|
assert_array_almost_equal(
|
||
|
reconstruction(np.ones((7, 5)), np.ones((7, 5))), 1)
|
||
|
|
||
|
|
||
|
def test_image_less_than_mask():
|
||
|
"""Test reconstruction where the image is uniform and less than mask"""
|
||
|
image = np.ones((5, 5))
|
||
|
mask = np.ones((5, 5)) * 2
|
||
|
assert_array_almost_equal(reconstruction(image, mask), 1)
|
||
|
|
||
|
|
||
|
def test_one_image_peak():
|
||
|
"""Test reconstruction with one peak pixel"""
|
||
|
image = np.ones((5, 5))
|
||
|
image[2, 2] = 2
|
||
|
mask = np.ones((5, 5)) * 3
|
||
|
assert_array_almost_equal(reconstruction(image, mask), 2)
|
||
|
|
||
|
|
||
|
def test_two_image_peaks():
|
||
|
"""Test reconstruction with two peak pixels isolated by the mask"""
|
||
|
image = np.array([[1, 1, 1, 1, 1, 1, 1, 1],
|
||
|
[1, 2, 1, 1, 1, 1, 1, 1],
|
||
|
[1, 1, 1, 1, 1, 1, 1, 1],
|
||
|
[1, 1, 1, 1, 1, 1, 1, 1],
|
||
|
[1, 1, 1, 1, 1, 1, 3, 1],
|
||
|
[1, 1, 1, 1, 1, 1, 1, 1]])
|
||
|
|
||
|
mask = np.array([[4, 4, 4, 1, 1, 1, 1, 1],
|
||
|
[4, 4, 4, 1, 1, 1, 1, 1],
|
||
|
[4, 4, 4, 1, 1, 1, 1, 1],
|
||
|
[1, 1, 1, 1, 1, 4, 4, 4],
|
||
|
[1, 1, 1, 1, 1, 4, 4, 4],
|
||
|
[1, 1, 1, 1, 1, 4, 4, 4]])
|
||
|
|
||
|
expected = np.array([[2, 2, 2, 1, 1, 1, 1, 1],
|
||
|
[2, 2, 2, 1, 1, 1, 1, 1],
|
||
|
[2, 2, 2, 1, 1, 1, 1, 1],
|
||
|
[1, 1, 1, 1, 1, 3, 3, 3],
|
||
|
[1, 1, 1, 1, 1, 3, 3, 3],
|
||
|
[1, 1, 1, 1, 1, 3, 3, 3]])
|
||
|
assert_array_almost_equal(reconstruction(image, mask), expected)
|
||
|
|
||
|
|
||
|
def test_zero_image_one_mask():
|
||
|
"""Test reconstruction with an image of all zeros and a mask that's not"""
|
||
|
result = reconstruction(np.zeros((10, 10)), np.ones((10, 10)))
|
||
|
assert_array_almost_equal(result, 0)
|
||
|
|
||
|
|
||
|
def test_fill_hole():
|
||
|
"""Test reconstruction by erosion, which should fill holes in mask."""
|
||
|
seed = np.array([0, 8, 8, 8, 8, 8, 8, 8, 8, 0])
|
||
|
mask = np.array([0, 3, 6, 2, 1, 1, 1, 4, 2, 0])
|
||
|
result = reconstruction(seed, mask, method='erosion')
|
||
|
assert_array_almost_equal(result, np.array([0, 3, 6, 4, 4, 4, 4, 4, 2, 0]))
|
||
|
|
||
|
|
||
|
def test_invalid_seed():
|
||
|
seed = np.ones((5, 5))
|
||
|
mask = np.ones((5, 5))
|
||
|
with testing.raises(ValueError):
|
||
|
reconstruction(seed * 2, mask,
|
||
|
method='dilation')
|
||
|
with testing.raises(ValueError):
|
||
|
reconstruction(seed * 0.5, mask,
|
||
|
method='erosion')
|
||
|
|
||
|
|
||
|
def test_invalid_selem():
|
||
|
seed = np.ones((5, 5))
|
||
|
mask = np.ones((5, 5))
|
||
|
with testing.raises(ValueError):
|
||
|
reconstruction(seed, mask,
|
||
|
selem=np.ones((4, 4)))
|
||
|
with testing.raises(ValueError):
|
||
|
reconstruction(seed, mask,
|
||
|
selem=np.ones((3, 4)))
|
||
|
reconstruction(seed, mask, selem=np.ones((3, 3)))
|
||
|
|
||
|
|
||
|
def test_invalid_method():
|
||
|
seed = np.array([0, 8, 8, 8, 8, 8, 8, 8, 8, 0])
|
||
|
mask = np.array([0, 3, 6, 2, 1, 1, 1, 4, 2, 0])
|
||
|
with testing.raises(ValueError):
|
||
|
reconstruction(seed, mask, method='foo')
|
||
|
|
||
|
|
||
|
def test_invalid_offset_not_none():
|
||
|
"""Test reconstruction with invalid not None offset parameter"""
|
||
|
image = np.array([[1, 1, 1, 1, 1, 1, 1, 1],
|
||
|
[1, 2, 1, 1, 1, 1, 1, 1],
|
||
|
[1, 1, 1, 1, 1, 1, 1, 1],
|
||
|
[1, 1, 1, 1, 1, 1, 1, 1],
|
||
|
[1, 1, 1, 1, 1, 1, 3, 1],
|
||
|
[1, 1, 1, 1, 1, 1, 1, 1]])
|
||
|
|
||
|
mask = np.array([[4, 4, 4, 1, 1, 1, 1, 1],
|
||
|
[4, 4, 4, 1, 1, 1, 1, 1],
|
||
|
[4, 4, 4, 1, 1, 1, 1, 1],
|
||
|
[1, 1, 1, 1, 1, 4, 4, 4],
|
||
|
[1, 1, 1, 1, 1, 4, 4, 4],
|
||
|
[1, 1, 1, 1, 1, 4, 4, 4]])
|
||
|
with testing.raises(ValueError):
|
||
|
reconstruction(image, mask, method='dilation',
|
||
|
selem=np.ones((3, 3)), offset=np.array([3, 0]))
|
||
|
|
||
|
|
||
|
def test_offset_not_none():
|
||
|
"""Test reconstruction with valid offset parameter"""
|
||
|
seed = np.array([0, 3, 6, 2, 1, 1, 1, 4, 2, 0])
|
||
|
mask = np.array([0, 8, 6, 8, 8, 8, 8, 4, 4, 0])
|
||
|
expected = np.array([0, 3, 6, 6, 6, 6, 6, 4, 4, 0])
|
||
|
|
||
|
assert_array_almost_equal(
|
||
|
reconstruction(seed, mask, method='dilation',
|
||
|
selem=np.ones(3), offset=np.array([0])), expected)
|