241 lines
8.1 KiB
Python
241 lines
8.1 KiB
Python
|
import os
|
||
|
import numpy as np
|
||
|
|
||
|
from skimage import data, data_dir
|
||
|
from skimage.metrics import structural_similarity
|
||
|
|
||
|
from skimage._shared import testing
|
||
|
from skimage._shared._warnings import expected_warnings
|
||
|
from skimage._shared.testing import (assert_equal, assert_almost_equal,
|
||
|
assert_array_almost_equal, fetch)
|
||
|
|
||
|
np.random.seed(5)
|
||
|
cam = data.camera()
|
||
|
sigma = 20.0
|
||
|
cam_noisy = np.clip(cam + sigma * np.random.randn(*cam.shape), 0, 255)
|
||
|
cam_noisy = cam_noisy.astype(cam.dtype)
|
||
|
|
||
|
np.random.seed(1234)
|
||
|
|
||
|
|
||
|
def test_structural_similarity_patch_range():
|
||
|
N = 51
|
||
|
X = (np.random.rand(N, N) * 255).astype(np.uint8)
|
||
|
Y = (np.random.rand(N, N) * 255).astype(np.uint8)
|
||
|
|
||
|
assert(structural_similarity(X, Y, win_size=N) < 0.1)
|
||
|
assert_equal(structural_similarity(X, X, win_size=N), 1)
|
||
|
|
||
|
|
||
|
def test_structural_similarity_image():
|
||
|
N = 100
|
||
|
X = (np.random.rand(N, N) * 255).astype(np.uint8)
|
||
|
Y = (np.random.rand(N, N) * 255).astype(np.uint8)
|
||
|
|
||
|
S0 = structural_similarity(X, X, win_size=3)
|
||
|
assert_equal(S0, 1)
|
||
|
|
||
|
S1 = structural_similarity(X, Y, win_size=3)
|
||
|
assert(S1 < 0.3)
|
||
|
|
||
|
S2 = structural_similarity(X, Y, win_size=11, gaussian_weights=True)
|
||
|
assert(S2 < 0.3)
|
||
|
|
||
|
mssim0, S3 = structural_similarity(X, Y, full=True)
|
||
|
assert_equal(S3.shape, X.shape)
|
||
|
mssim = structural_similarity(X, Y)
|
||
|
assert_equal(mssim0, mssim)
|
||
|
|
||
|
# ssim of image with itself should be 1.0
|
||
|
assert_equal(structural_similarity(X, X), 1.0)
|
||
|
|
||
|
|
||
|
# Because we are forcing a random seed state, it is probably good to test
|
||
|
# against a few seeds in case on seed gives a particularly bad example
|
||
|
@testing.parametrize('seed', [1, 2, 3, 5, 8, 13])
|
||
|
def test_structural_similarity_grad(seed):
|
||
|
N = 30
|
||
|
# NOTE: This test is known to randomly fail on some systems (Mac OS X 10.6)
|
||
|
# And when testing tests in parallel. Therefore, we choose a few
|
||
|
# seeds that are known to work.
|
||
|
# The likely cause of this failure is that we are setting a hard
|
||
|
# threshold on the value of the gradient. Often the computed gradient
|
||
|
# is only slightly larger than what was measured.
|
||
|
# X = np.random.rand(N, N) * 255
|
||
|
# Y = np.random.rand(N, N) * 255
|
||
|
rnd = np.random.RandomState(seed)
|
||
|
X = rnd.rand(N, N) * 255
|
||
|
Y = rnd.rand(N, N) * 255
|
||
|
|
||
|
f = structural_similarity(X, Y, data_range=255)
|
||
|
g = structural_similarity(X, Y, data_range=255, gradient=True)
|
||
|
|
||
|
assert f < 0.05
|
||
|
|
||
|
assert g[0] < 0.05
|
||
|
assert np.all(g[1] < 0.05)
|
||
|
|
||
|
mssim, grad, s = structural_similarity(X, Y, data_range=255,
|
||
|
gradient=True, full=True)
|
||
|
assert np.all(grad < 0.05)
|
||
|
|
||
|
|
||
|
def test_structural_similarity_dtype():
|
||
|
N = 30
|
||
|
X = np.random.rand(N, N)
|
||
|
Y = np.random.rand(N, N)
|
||
|
|
||
|
S1 = structural_similarity(X, Y)
|
||
|
|
||
|
X = (X * 255).astype(np.uint8)
|
||
|
Y = (X * 255).astype(np.uint8)
|
||
|
|
||
|
S2 = structural_similarity(X, Y)
|
||
|
|
||
|
assert S1 < 0.1
|
||
|
assert S2 < 0.1
|
||
|
|
||
|
|
||
|
def test_structural_similarity_multichannel():
|
||
|
N = 100
|
||
|
X = (np.random.rand(N, N) * 255).astype(np.uint8)
|
||
|
Y = (np.random.rand(N, N) * 255).astype(np.uint8)
|
||
|
|
||
|
S1 = structural_similarity(X, Y, win_size=3)
|
||
|
|
||
|
# replicate across three channels. should get identical value
|
||
|
Xc = np.tile(X[..., np.newaxis], (1, 1, 3))
|
||
|
Yc = np.tile(Y[..., np.newaxis], (1, 1, 3))
|
||
|
S2 = structural_similarity(Xc, Yc, multichannel=True, win_size=3)
|
||
|
assert_almost_equal(S1, S2)
|
||
|
|
||
|
# full case should return an image as well
|
||
|
m, S3 = structural_similarity(Xc, Yc, multichannel=True, full=True)
|
||
|
assert_equal(S3.shape, Xc.shape)
|
||
|
|
||
|
# gradient case
|
||
|
m, grad = structural_similarity(Xc, Yc, multichannel=True, gradient=True)
|
||
|
assert_equal(grad.shape, Xc.shape)
|
||
|
|
||
|
# full and gradient case
|
||
|
m, grad, S3 = structural_similarity(Xc, Yc,
|
||
|
multichannel=True,
|
||
|
full=True,
|
||
|
gradient=True)
|
||
|
assert_equal(grad.shape, Xc.shape)
|
||
|
assert_equal(S3.shape, Xc.shape)
|
||
|
|
||
|
# fail if win_size exceeds any non-channel dimension
|
||
|
with testing.raises(ValueError):
|
||
|
structural_similarity(Xc, Yc, win_size=7, multichannel=False)
|
||
|
|
||
|
|
||
|
def test_structural_similarity_nD():
|
||
|
# test 1D through 4D on small random arrays
|
||
|
N = 10
|
||
|
for ndim in range(1, 5):
|
||
|
xsize = [N, ] * 5
|
||
|
X = (np.random.rand(*xsize) * 255).astype(np.uint8)
|
||
|
Y = (np.random.rand(*xsize) * 255).astype(np.uint8)
|
||
|
|
||
|
mssim = structural_similarity(X, Y, win_size=3)
|
||
|
assert mssim < 0.05
|
||
|
|
||
|
|
||
|
def test_structural_similarity_multichannel_chelsea():
|
||
|
# color image example
|
||
|
Xc = data.chelsea()
|
||
|
sigma = 15.0
|
||
|
Yc = np.clip(Xc + sigma * np.random.randn(*Xc.shape), 0, 255)
|
||
|
Yc = Yc.astype(Xc.dtype)
|
||
|
|
||
|
# multichannel result should be mean of the individual channel results
|
||
|
mssim = structural_similarity(Xc, Yc, multichannel=True)
|
||
|
mssim_sep = [structural_similarity(Yc[..., c], Xc[..., c])
|
||
|
for c in range(Xc.shape[-1])]
|
||
|
assert_almost_equal(mssim, np.mean(mssim_sep))
|
||
|
|
||
|
# ssim of image with itself should be 1.0
|
||
|
assert_equal(structural_similarity(Xc, Xc, multichannel=True), 1.0)
|
||
|
|
||
|
|
||
|
def test_gaussian_mssim_vs_IPOL():
|
||
|
# Tests vs. imdiff result from the following IPOL article and code:
|
||
|
# https://www.ipol.im/pub/art/2011/g_lmii/
|
||
|
mssim_IPOL = 0.327309966087341
|
||
|
mssim = structural_similarity(cam, cam_noisy, gaussian_weights=True,
|
||
|
use_sample_covariance=False)
|
||
|
assert_almost_equal(mssim, mssim_IPOL, decimal=3)
|
||
|
|
||
|
|
||
|
def test_gaussian_mssim_vs_author_ref():
|
||
|
"""
|
||
|
test vs. result from original author's Matlab implementation available at
|
||
|
https://ece.uwaterloo.ca/~z70wang/research/ssim/
|
||
|
|
||
|
Matlab test code:
|
||
|
img1 = imread('camera.png')
|
||
|
img2 = imread('camera_noisy.png')
|
||
|
mssim = ssim_index(img1, img2)
|
||
|
"""
|
||
|
mssim_matlab = 0.327314295673357
|
||
|
mssim = structural_similarity(cam, cam_noisy, gaussian_weights=True,
|
||
|
use_sample_covariance=False)
|
||
|
assert_almost_equal(mssim, mssim_matlab, decimal=10)
|
||
|
|
||
|
|
||
|
def test_gaussian_mssim_and_gradient_vs_Matlab():
|
||
|
# comparison to Matlab implementation of N. Avanaki:
|
||
|
# https://ece.uwaterloo.ca/~nnikvand/Coderep/SHINE%20TOOLBOX/SHINEtoolbox/
|
||
|
# Note: final line of ssim_sens.m was modified to discard image borders
|
||
|
|
||
|
ref = np.load(fetch('data/mssim_matlab_output.npz'))
|
||
|
grad_matlab = ref['grad_matlab']
|
||
|
mssim_matlab = float(ref['mssim_matlab'])
|
||
|
|
||
|
mssim, grad = structural_similarity(cam, cam_noisy, gaussian_weights=True,
|
||
|
gradient=True,
|
||
|
use_sample_covariance=False)
|
||
|
|
||
|
assert_almost_equal(mssim, mssim_matlab, decimal=3)
|
||
|
|
||
|
# check almost equal aside from object borders
|
||
|
assert_array_almost_equal(grad_matlab[5:-5], grad[5:-5])
|
||
|
|
||
|
|
||
|
def test_mssim_vs_legacy():
|
||
|
# check that ssim with default options matches skimage 0.11 result
|
||
|
mssim_skimage_0pt11 = 0.34192589699605191
|
||
|
mssim = structural_similarity(cam, cam_noisy)
|
||
|
assert_almost_equal(mssim, mssim_skimage_0pt11)
|
||
|
|
||
|
|
||
|
def test_mssim_mixed_dtype():
|
||
|
mssim = structural_similarity(cam, cam_noisy)
|
||
|
with expected_warnings(['Inputs have mismatched dtype']):
|
||
|
mssim_mixed = structural_similarity(cam, cam_noisy.astype(np.float32))
|
||
|
assert_almost_equal(mssim, mssim_mixed)
|
||
|
|
||
|
# no warning when user supplies data_range
|
||
|
mssim_mixed = structural_similarity(cam, cam_noisy.astype(np.float32),
|
||
|
data_range=255)
|
||
|
assert_almost_equal(mssim, mssim_mixed)
|
||
|
|
||
|
|
||
|
def test_invalid_input():
|
||
|
# size mismatch
|
||
|
X = np.zeros((9, 9), dtype=np.double)
|
||
|
Y = np.zeros((8, 8), dtype=np.double)
|
||
|
with testing.raises(ValueError):
|
||
|
structural_similarity(X, Y)
|
||
|
# win_size exceeds image extent
|
||
|
with testing.raises(ValueError):
|
||
|
structural_similarity(X, X, win_size=X.shape[0] + 1)
|
||
|
# some kwarg inputs must be non-negative
|
||
|
with testing.raises(ValueError):
|
||
|
structural_similarity(X, X, K1=-0.1)
|
||
|
with testing.raises(ValueError):
|
||
|
structural_similarity(X, X, K2=-0.1)
|
||
|
with testing.raises(ValueError):
|
||
|
structural_similarity(X, X, sigma=-1.0)
|