Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/skimage/feature/tests/test_hog.py

257 lines
9.4 KiB
Python
Raw Normal View History

import os
import numpy as np
from scipy import ndimage as ndi
from skimage import color
from skimage import data
from skimage import feature
from skimage import img_as_float
from skimage import draw
from skimage._shared.testing import assert_almost_equal, fetch
from skimage._shared import testing
def test_hog_output_size():
img = img_as_float(data.astronaut()[:256, :].mean(axis=2))
fd = feature.hog(img, orientations=9, pixels_per_cell=(8, 8),
cells_per_block=(1, 1), block_norm='L1')
assert len(fd) == 9 * (256 // 8) * (512 // 8)
def test_hog_output_correctness_l1_norm():
img = color.rgb2gray(data.astronaut())
correct_output = np.load(fetch('data/astronaut_GRAY_hog_L1.npy'))
output = feature.hog(img, orientations=9, pixels_per_cell=(8, 8),
cells_per_block=(3, 3), block_norm='L1',
feature_vector=True, transform_sqrt=False,
visualize=False)
assert_almost_equal(output, correct_output)
def test_hog_output_correctness_l2hys_norm():
img = color.rgb2gray(data.astronaut())
correct_output = np.load(fetch('data/astronaut_GRAY_hog_L2-Hys.npy'))
output = feature.hog(img, orientations=9, pixels_per_cell=(8, 8),
cells_per_block=(3, 3), block_norm='L2-Hys',
feature_vector=True, transform_sqrt=False,
visualize=False)
assert_almost_equal(output, correct_output)
def test_hog_image_size_cell_size_mismatch():
image = data.camera()[:150, :200]
fd = feature.hog(image, orientations=9, pixels_per_cell=(8, 8),
cells_per_block=(1, 1), block_norm='L1')
assert len(fd) == 9 * (150 // 8) * (200 // 8)
def test_hog_basic_orientations_and_data_types():
# scenario:
# 1) create image (with float values) where upper half is filled by
# zeros, bottom half by 100
# 2) create unsigned integer version of this image
# 3) calculate feature.hog() for both images, both with 'transform_sqrt'
# option enabled and disabled
# 4) verify that all results are equal where expected
# 5) verify that computed feature vector is as expected
# 6) repeat the scenario for 90, 180 and 270 degrees rotated images
# size of testing image
width = height = 35
image0 = np.zeros((height, width), dtype='float')
image0[height // 2:] = 100
for rot in range(4):
# rotate by 0, 90, 180 and 270 degrees
image_float = np.rot90(image0, rot)
# create uint8 image from image_float
image_uint8 = image_float.astype('uint8')
(hog_float, hog_img_float) = feature.hog(
image_float, orientations=4, pixels_per_cell=(8, 8),
cells_per_block=(1, 1), visualize=True, transform_sqrt=False,
block_norm='L1')
(hog_uint8, hog_img_uint8) = feature.hog(
image_uint8, orientations=4, pixels_per_cell=(8, 8),
cells_per_block=(1, 1), visualize=True, transform_sqrt=False,
block_norm='L1')
(hog_float_norm, hog_img_float_norm) = feature.hog(
image_float, orientations=4, pixels_per_cell=(8, 8),
cells_per_block=(1, 1), visualize=True, transform_sqrt=True,
block_norm='L1')
(hog_uint8_norm, hog_img_uint8_norm) = feature.hog(
image_uint8, orientations=4, pixels_per_cell=(8, 8),
cells_per_block=(1, 1), visualize=True, transform_sqrt=True,
block_norm='L1')
# set to True to enable manual debugging with graphical output,
# must be False for automatic testing
if False:
import matplotlib.pyplot as plt
plt.figure()
plt.subplot(2, 3, 1)
plt.imshow(image_float)
plt.colorbar()
plt.title('image')
plt.subplot(2, 3, 2)
plt.imshow(hog_img_float)
plt.colorbar()
plt.title('HOG result visualisation (float img)')
plt.subplot(2, 3, 5)
plt.imshow(hog_img_uint8)
plt.colorbar()
plt.title('HOG result visualisation (uint8 img)')
plt.subplot(2, 3, 3)
plt.imshow(hog_img_float_norm)
plt.colorbar()
plt.title('HOG result (transform_sqrt) visualisation (float img)')
plt.subplot(2, 3, 6)
plt.imshow(hog_img_uint8_norm)
plt.colorbar()
plt.title('HOG result (transform_sqrt) visualisation (uint8 img)')
plt.show()
# results (features and visualisation) for float and uint8 images must
# be almost equal
assert_almost_equal(hog_float, hog_uint8)
assert_almost_equal(hog_img_float, hog_img_uint8)
# resulting features should be almost equal
# when 'transform_sqrt' is enabled
# or disabled (for current simple testing image)
assert_almost_equal(hog_float, hog_float_norm, decimal=4)
assert_almost_equal(hog_float, hog_uint8_norm, decimal=4)
# reshape resulting feature vector to matrix with 4 columns (each
# corresponding to one of 4 directions); only one direction should
# contain nonzero values (this is manually determined for testing
# image)
actual = np.max(hog_float.reshape(-1, 4), axis=0)
if rot in [0, 2]:
# image is rotated by 0 and 180 degrees
desired = [0, 0, 1, 0]
elif rot in [1, 3]:
# image is rotated by 90 and 270 degrees
desired = [1, 0, 0, 0]
else:
raise Exception('Result is not determined for this rotation.')
assert_almost_equal(actual, desired, decimal=2)
def test_hog_orientations_circle():
# scenario:
# 1) create image with blurred circle in the middle
# 2) calculate feature.hog()
# 3) verify that the resulting feature vector contains uniformly
# distributed values for all orientations, i.e. no orientation is
# lost or emphasized
# 4) repeat the scenario for other 'orientations' option
# size of testing image
width = height = 100
image = np.zeros((height, width))
rr, cc = draw.disk((int(height / 2), int(width / 2)), int(width / 3))
image[rr, cc] = 100
image = ndi.gaussian_filter(image, 2)
for orientations in range(2, 15):
(hog, hog_img) = feature.hog(image, orientations=orientations,
pixels_per_cell=(8, 8),
cells_per_block=(1, 1), visualize=True,
transform_sqrt=False,
block_norm='L1')
# set to True to enable manual debugging with graphical output,
# must be False for automatic testing
if False:
import matplotlib.pyplot as plt
plt.figure()
plt.subplot(1, 2, 1)
plt.imshow(image)
plt.colorbar()
plt.title('image_float')
plt.subplot(1, 2, 2)
plt.imshow(hog_img)
plt.colorbar()
plt.title('HOG result visualisation, '
'orientations=%d' % (orientations))
plt.show()
# reshape resulting feature vector to matrix with N columns (each
# column corresponds to one direction),
hog_matrix = hog.reshape(-1, orientations)
# compute mean values in the resulting feature vector for each
# direction, these values should be almost equal to the global mean
# value (since the image contains a circle), i.e., all directions have
# same contribution to the result
actual = np.mean(hog_matrix, axis=0)
desired = np.mean(hog_matrix)
assert_almost_equal(actual, desired, decimal=1)
def test_hog_visualization_orientation():
"""Test that the visualization produces a line with correct orientation
The hog visualization is expected to draw line segments perpendicular to
the midpoints of orientation bins. This example verifies that when
orientations=3 and the gradient is entirely in the middle bin (bisected
by the y-axis), the line segment drawn by the visualization is horizontal.
"""
width = height = 11
image = np.zeros((height, width), dtype='float')
image[height // 2:] = 1
_, hog_image = feature.hog(
image,
orientations=3,
pixels_per_cell=(width, height),
cells_per_block=(1, 1),
visualize=True,
block_norm='L1'
)
middle_index = height // 2
indices_excluding_middle = [x for x in range(height) if x != middle_index]
assert (hog_image[indices_excluding_middle, :] == 0).all()
assert (hog_image[middle_index, 1:-1] > 0).all()
def test_hog_block_normalization_incorrect_error():
img = np.eye(4)
with testing.raises(ValueError):
feature.hog(img, block_norm='Linf')
@testing.parametrize("shape,multichannel", [
((3, 3, 3), False),
((3, 3), True),
((3, 3, 3, 3), True),
])
def test_hog_incorrect_dimensions(shape, multichannel):
img = np.zeros(shape)
with testing.raises(ValueError):
feature.hog(img, multichannel=multichannel, block_norm='L1')
def test_hog_output_equivariance_multichannel():
img = data.astronaut()
img[:, :, (1, 2)] = 0
hog_ref = feature.hog(img, multichannel=True, block_norm='L1')
for n in (1, 2):
hog_fact = feature.hog(np.roll(img, n, axis=2), multichannel=True,
block_norm='L1')
assert_almost_equal(hog_ref, hog_fact)