154 lines
7.1 KiB
Python
154 lines
7.1 KiB
Python
|
from random import shuffle
|
||
|
from itertools import chain
|
||
|
|
||
|
import pytest
|
||
|
|
||
|
import numpy as np
|
||
|
from numpy.testing import assert_allclose
|
||
|
from numpy.testing import assert_array_equal
|
||
|
|
||
|
from skimage.transform import integral_image
|
||
|
from skimage.feature import haar_like_feature
|
||
|
from skimage.feature import haar_like_feature_coord
|
||
|
from skimage.feature import draw_haar_like_feature
|
||
|
|
||
|
|
||
|
def test_haar_like_feature_error():
|
||
|
img = np.ones((5, 5), dtype=np.float32)
|
||
|
img_ii = integral_image(img)
|
||
|
|
||
|
feature_type = 'unknown_type'
|
||
|
with pytest.raises(ValueError):
|
||
|
haar_like_feature(img_ii, 0, 0, 5, 5, feature_type=feature_type)
|
||
|
haar_like_feature_coord(5, 5, feature_type=feature_type)
|
||
|
draw_haar_like_feature(img, 0, 0, 5, 5, feature_type=feature_type)
|
||
|
|
||
|
feat_coord, feat_type = haar_like_feature_coord(5, 5, 'type-2-x')
|
||
|
with pytest.raises(ValueError):
|
||
|
haar_like_feature(img_ii, 0, 0, 5, 5, feature_type=feat_type[:3],
|
||
|
feature_coord=feat_coord)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("dtype", [np.uint8, np.int8,
|
||
|
np.float32, np.float64])
|
||
|
@pytest.mark.parametrize("feature_type,shape_feature,expected_feature_value",
|
||
|
[('type-2-x', (84,), [0.]),
|
||
|
('type-2-y', (84,), [0.]),
|
||
|
('type-3-x', (42,), [-4., -3., -2., -1.]),
|
||
|
('type-3-y', (42,), [-4., -3., -2., -1.]),
|
||
|
('type-4', (36,), [0.])])
|
||
|
def test_haar_like_feature(feature_type, shape_feature,
|
||
|
expected_feature_value, dtype):
|
||
|
# test Haar-like feature on a basic one image
|
||
|
img = np.ones((5, 5), dtype=dtype)
|
||
|
img_ii = integral_image(img)
|
||
|
haar_feature = haar_like_feature(img_ii, 0, 0, 5, 5,
|
||
|
feature_type=feature_type)
|
||
|
assert_allclose(np.sort(np.unique(haar_feature)), expected_feature_value)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("dtype", [np.uint8, np.int8,
|
||
|
np.float32, np.float64])
|
||
|
@pytest.mark.parametrize("feature_type", ['type-2-x', 'type-2-y',
|
||
|
'type-3-x', 'type-3-y',
|
||
|
'type-4'])
|
||
|
def test_haar_like_feature_fused_type(dtype, feature_type):
|
||
|
# check that the input type is kept
|
||
|
img = np.ones((5, 5), dtype=dtype)
|
||
|
img_ii = integral_image(img)
|
||
|
expected_dtype = img_ii.dtype
|
||
|
# to avoid overflow, unsigned type are converted to signed
|
||
|
if 'uint' in expected_dtype.name:
|
||
|
expected_dtype = np.dtype(expected_dtype.name.replace('u', ''))
|
||
|
haar_feature = haar_like_feature(img_ii, 0, 0, 5, 5,
|
||
|
feature_type=feature_type)
|
||
|
assert haar_feature.dtype == expected_dtype
|
||
|
|
||
|
|
||
|
def test_haar_like_feature_list():
|
||
|
img = np.ones((5, 5), dtype=np.int8)
|
||
|
img_ii = integral_image(img)
|
||
|
feature_type = ['type-2-x', 'type-2-y', 'type-3-x', 'type-3-y', 'type-4']
|
||
|
haar_list = haar_like_feature(img_ii, 0, 0, 5, 5,
|
||
|
feature_type=feature_type)
|
||
|
haar_all = haar_like_feature(img_ii, 0, 0, 5, 5)
|
||
|
assert_array_equal(haar_list, haar_all)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("feature_type", ['type-2-x', 'type-2-y',
|
||
|
'type-3-x', 'type-3-y',
|
||
|
'type-4',
|
||
|
['type-2-y', 'type-3-x',
|
||
|
'type-4']])
|
||
|
def test_haar_like_feature_precomputed(feature_type):
|
||
|
img = np.ones((5, 5), dtype=np.int8)
|
||
|
img_ii = integral_image(img)
|
||
|
if isinstance(feature_type, list):
|
||
|
# shuffle the index of the feature to be sure that we are output
|
||
|
# the features in the same order
|
||
|
shuffle(feature_type)
|
||
|
feat_coord, feat_type = zip(*[haar_like_feature_coord(5, 5, feat_t)
|
||
|
for feat_t in feature_type])
|
||
|
feat_coord = np.concatenate(feat_coord)
|
||
|
feat_type = np.concatenate(feat_type)
|
||
|
else:
|
||
|
feat_coord, feat_type = haar_like_feature_coord(5, 5, feature_type)
|
||
|
haar_feature_precomputed = haar_like_feature(img_ii, 0, 0, 5, 5,
|
||
|
feature_type=feat_type,
|
||
|
feature_coord=feat_coord)
|
||
|
haar_feature = haar_like_feature(img_ii, 0, 0, 5, 5, feature_type)
|
||
|
assert_array_equal(haar_feature_precomputed, haar_feature)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("feature_type,height,width,expected_coord",
|
||
|
[('type-2-x', 2, 2,
|
||
|
[[[(0, 0), (0, 0)], [(0, 1), (0, 1)]],
|
||
|
[[(1, 0), (1, 0)], [(1, 1), (1, 1)]]]),
|
||
|
('type-2-y', 2, 2,
|
||
|
[[[(0, 0), (0, 0)], [(1, 0), (1, 0)]],
|
||
|
[[(0, 1), (0, 1)], [(1, 1), (1, 1)]]]),
|
||
|
('type-3-x', 3, 3,
|
||
|
[[[(0, 0), (0, 0)], [(0, 1), (0, 1)],
|
||
|
[(0, 2), (0, 2)]],
|
||
|
[[(0, 0), (1, 0)], [(0, 1), (1, 1)],
|
||
|
[(0, 2), (1, 2)]],
|
||
|
[[(1, 0), (1, 0)], [(1, 1), (1, 1)],
|
||
|
[(1, 2), (1, 2)]],
|
||
|
[[(1, 0), (2, 0)], [(1, 1), (2, 1)],
|
||
|
[(1, 2), (2, 2)]],
|
||
|
[[(2, 0), (2, 0)], [(2, 1), (2, 1)],
|
||
|
[(2, 2), (2, 2)]]]),
|
||
|
('type-3-y', 3, 3,
|
||
|
[[[(0, 0), (0, 0)], [(1, 0), (1, 0)],
|
||
|
[(2, 0), (2, 0)]],
|
||
|
[[(0, 0), (0, 1)], [(1, 0), (1, 1)],
|
||
|
[(2, 0), (2, 1)]],
|
||
|
[[(0, 1), (0, 1)], [(1, 1), (1, 1)],
|
||
|
[(2, 1), (2, 1)]],
|
||
|
[[(0, 1), (0, 2)], [(1, 1), (1, 2)],
|
||
|
[(2, 1), (2, 2)]],
|
||
|
[[(0, 2), (0, 2)], [(1, 2), (1, 2)],
|
||
|
[(2, 2), (2, 2)]]]),
|
||
|
('type-4', 2, 2,
|
||
|
[[[(0, 0), (0, 0)], [(0, 1), (0, 1)],
|
||
|
[(1, 1), (1, 1)], [(1, 0), (1, 0)]]])])
|
||
|
def test_haar_like_feature_coord(feature_type, height, width, expected_coord):
|
||
|
feat_coord, feat_type = haar_like_feature_coord(width, height,
|
||
|
feature_type)
|
||
|
# convert the output to a full numpy array just for comparison
|
||
|
feat_coord = np.array([hf for hf in feat_coord])
|
||
|
assert_array_equal(feat_coord, expected_coord)
|
||
|
assert np.all(feat_type == feature_type)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("max_n_features,nnz_values", [(None, 46),
|
||
|
(1, 8)])
|
||
|
def test_draw_haar_like_feature(max_n_features, nnz_values):
|
||
|
img = np.zeros((5, 5), dtype=np.float32)
|
||
|
coord, _ = haar_like_feature_coord(5, 5, 'type-4')
|
||
|
image = draw_haar_like_feature(img, 0, 0, 5, 5, coord,
|
||
|
max_n_features=max_n_features,
|
||
|
random_state=0)
|
||
|
assert image.shape == (5, 5, 3)
|
||
|
assert np.count_nonzero(image) == nnz_values
|