302 lines
11 KiB
Python
302 lines
11 KiB
Python
|
import pytest
|
||
|
|
||
|
import networkx as nx
|
||
|
from networkx.testing import assert_nodes_equal
|
||
|
from .test_graph import BaseGraphTester, BaseAttrGraphTester
|
||
|
from .test_graph import TestGraph as _TestGraph
|
||
|
from .test_graph import TestEdgeSubgraph as _TestGraphEdgeSubgraph
|
||
|
|
||
|
|
||
|
class BaseDiGraphTester(BaseGraphTester):
|
||
|
def test_has_successor(self):
|
||
|
G = self.K3
|
||
|
assert G.has_successor(0, 1)
|
||
|
assert not G.has_successor(0, -1)
|
||
|
|
||
|
def test_successors(self):
|
||
|
G = self.K3
|
||
|
assert sorted(G.successors(0)) == [1, 2]
|
||
|
with pytest.raises(nx.NetworkXError):
|
||
|
G.successors(-1)
|
||
|
|
||
|
def test_has_predecessor(self):
|
||
|
G = self.K3
|
||
|
assert G.has_predecessor(0, 1)
|
||
|
assert not G.has_predecessor(0, -1)
|
||
|
|
||
|
def test_predecessors(self):
|
||
|
G = self.K3
|
||
|
assert sorted(G.predecessors(0)) == [1, 2]
|
||
|
with pytest.raises(nx.NetworkXError):
|
||
|
G.predecessors(-1)
|
||
|
|
||
|
def test_edges(self):
|
||
|
G = self.K3
|
||
|
assert sorted(G.edges()) == [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)]
|
||
|
assert sorted(G.edges(0)) == [(0, 1), (0, 2)]
|
||
|
assert sorted(G.edges([0, 1])) == [(0, 1), (0, 2), (1, 0), (1, 2)]
|
||
|
with pytest.raises(nx.NetworkXError):
|
||
|
G.edges(-1)
|
||
|
|
||
|
def test_out_edges(self):
|
||
|
G = self.K3
|
||
|
assert sorted(G.out_edges()) == [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)]
|
||
|
assert sorted(G.out_edges(0)) == [(0, 1), (0, 2)]
|
||
|
with pytest.raises(nx.NetworkXError):
|
||
|
G.out_edges(-1)
|
||
|
|
||
|
def test_out_edges_dir(self):
|
||
|
G = self.P3
|
||
|
assert sorted(G.out_edges()) == [(0, 1), (1, 2)]
|
||
|
assert sorted(G.out_edges(0)) == [(0, 1)]
|
||
|
assert sorted(G.out_edges(2)) == []
|
||
|
|
||
|
def test_out_edges_data(self):
|
||
|
G = nx.DiGraph([(0, 1, {"data": 0}), (1, 0, {})])
|
||
|
assert sorted(G.out_edges(data=True)) == [(0, 1, {"data": 0}), (1, 0, {})]
|
||
|
assert sorted(G.out_edges(0, data=True)) == [(0, 1, {"data": 0})]
|
||
|
assert sorted(G.out_edges(data="data")) == [(0, 1, 0), (1, 0, None)]
|
||
|
assert sorted(G.out_edges(0, data="data")) == [(0, 1, 0)]
|
||
|
|
||
|
def test_in_edges_dir(self):
|
||
|
G = self.P3
|
||
|
assert sorted(G.in_edges()) == [(0, 1), (1, 2)]
|
||
|
assert sorted(G.in_edges(0)) == []
|
||
|
assert sorted(G.in_edges(2)) == [(1, 2)]
|
||
|
|
||
|
def test_in_edges_data(self):
|
||
|
G = nx.DiGraph([(0, 1, {"data": 0}), (1, 0, {})])
|
||
|
assert sorted(G.in_edges(data=True)) == [(0, 1, {"data": 0}), (1, 0, {})]
|
||
|
assert sorted(G.in_edges(1, data=True)) == [(0, 1, {"data": 0})]
|
||
|
assert sorted(G.in_edges(data="data")) == [(0, 1, 0), (1, 0, None)]
|
||
|
assert sorted(G.in_edges(1, data="data")) == [(0, 1, 0)]
|
||
|
|
||
|
def test_degree(self):
|
||
|
G = self.K3
|
||
|
assert sorted(G.degree()) == [(0, 4), (1, 4), (2, 4)]
|
||
|
assert dict(G.degree()) == {0: 4, 1: 4, 2: 4}
|
||
|
assert G.degree(0) == 4
|
||
|
assert list(G.degree(iter([0]))) == [(0, 4)] # run through iterator
|
||
|
|
||
|
def test_in_degree(self):
|
||
|
G = self.K3
|
||
|
assert sorted(G.in_degree()) == [(0, 2), (1, 2), (2, 2)]
|
||
|
assert dict(G.in_degree()) == {0: 2, 1: 2, 2: 2}
|
||
|
assert G.in_degree(0) == 2
|
||
|
assert list(G.in_degree(iter([0]))) == [(0, 2)] # run through iterator
|
||
|
|
||
|
def test_out_degree(self):
|
||
|
G = self.K3
|
||
|
assert sorted(G.out_degree()) == [(0, 2), (1, 2), (2, 2)]
|
||
|
assert dict(G.out_degree()) == {0: 2, 1: 2, 2: 2}
|
||
|
assert G.out_degree(0) == 2
|
||
|
assert list(G.out_degree(iter([0]))) == [(0, 2)]
|
||
|
|
||
|
def test_size(self):
|
||
|
G = self.K3
|
||
|
assert G.size() == 6
|
||
|
assert G.number_of_edges() == 6
|
||
|
|
||
|
def test_to_undirected_reciprocal(self):
|
||
|
G = self.Graph()
|
||
|
G.add_edge(1, 2)
|
||
|
assert G.to_undirected().has_edge(1, 2)
|
||
|
assert not G.to_undirected(reciprocal=True).has_edge(1, 2)
|
||
|
G.add_edge(2, 1)
|
||
|
assert G.to_undirected(reciprocal=True).has_edge(1, 2)
|
||
|
|
||
|
def test_reverse_copy(self):
|
||
|
G = nx.DiGraph([(0, 1), (1, 2)])
|
||
|
R = G.reverse()
|
||
|
assert sorted(R.edges()) == [(1, 0), (2, 1)]
|
||
|
R.remove_edge(1, 0)
|
||
|
assert sorted(R.edges()) == [(2, 1)]
|
||
|
assert sorted(G.edges()) == [(0, 1), (1, 2)]
|
||
|
|
||
|
def test_reverse_nocopy(self):
|
||
|
G = nx.DiGraph([(0, 1), (1, 2)])
|
||
|
R = G.reverse(copy=False)
|
||
|
assert sorted(R.edges()) == [(1, 0), (2, 1)]
|
||
|
with pytest.raises(nx.NetworkXError):
|
||
|
R.remove_edge(1, 0)
|
||
|
|
||
|
def test_reverse_hashable(self):
|
||
|
class Foo:
|
||
|
pass
|
||
|
|
||
|
x = Foo()
|
||
|
y = Foo()
|
||
|
G = nx.DiGraph()
|
||
|
G.add_edge(x, y)
|
||
|
assert_nodes_equal(G.nodes(), G.reverse().nodes())
|
||
|
assert [(y, x)] == list(G.reverse().edges())
|
||
|
|
||
|
|
||
|
class BaseAttrDiGraphTester(BaseDiGraphTester, BaseAttrGraphTester):
|
||
|
def test_edges_data(self):
|
||
|
G = self.K3
|
||
|
all_edges = [
|
||
|
(0, 1, {}),
|
||
|
(0, 2, {}),
|
||
|
(1, 0, {}),
|
||
|
(1, 2, {}),
|
||
|
(2, 0, {}),
|
||
|
(2, 1, {}),
|
||
|
]
|
||
|
assert sorted(G.edges(data=True)) == all_edges
|
||
|
assert sorted(G.edges(0, data=True)) == all_edges[:2]
|
||
|
assert sorted(G.edges([0, 1], data=True)) == all_edges[:4]
|
||
|
with pytest.raises(nx.NetworkXError):
|
||
|
G.edges(-1, True)
|
||
|
|
||
|
def test_in_degree_weighted(self):
|
||
|
G = self.K3.copy()
|
||
|
G.add_edge(0, 1, weight=0.3, other=1.2)
|
||
|
assert sorted(G.in_degree(weight="weight")) == [(0, 2), (1, 1.3), (2, 2)]
|
||
|
assert dict(G.in_degree(weight="weight")) == {0: 2, 1: 1.3, 2: 2}
|
||
|
assert G.in_degree(1, weight="weight") == 1.3
|
||
|
assert sorted(G.in_degree(weight="other")) == [(0, 2), (1, 2.2), (2, 2)]
|
||
|
assert dict(G.in_degree(weight="other")) == {0: 2, 1: 2.2, 2: 2}
|
||
|
assert G.in_degree(1, weight="other") == 2.2
|
||
|
assert list(G.in_degree(iter([1]), weight="other")) == [(1, 2.2)]
|
||
|
|
||
|
def test_out_degree_weighted(self):
|
||
|
G = self.K3.copy()
|
||
|
G.add_edge(0, 1, weight=0.3, other=1.2)
|
||
|
assert sorted(G.out_degree(weight="weight")) == [(0, 1.3), (1, 2), (2, 2)]
|
||
|
assert dict(G.out_degree(weight="weight")) == {0: 1.3, 1: 2, 2: 2}
|
||
|
assert G.out_degree(0, weight="weight") == 1.3
|
||
|
assert sorted(G.out_degree(weight="other")) == [(0, 2.2), (1, 2), (2, 2)]
|
||
|
assert dict(G.out_degree(weight="other")) == {0: 2.2, 1: 2, 2: 2}
|
||
|
assert G.out_degree(0, weight="other") == 2.2
|
||
|
assert list(G.out_degree(iter([0]), weight="other")) == [(0, 2.2)]
|
||
|
|
||
|
|
||
|
class TestDiGraph(BaseAttrDiGraphTester, _TestGraph):
|
||
|
"""Tests specific to dict-of-dict-of-dict digraph data structure"""
|
||
|
|
||
|
def setup_method(self):
|
||
|
self.Graph = nx.DiGraph
|
||
|
# build dict-of-dict-of-dict K3
|
||
|
ed1, ed2, ed3, ed4, ed5, ed6 = ({}, {}, {}, {}, {}, {})
|
||
|
self.k3adj = {0: {1: ed1, 2: ed2}, 1: {0: ed3, 2: ed4}, 2: {0: ed5, 1: ed6}}
|
||
|
self.k3edges = [(0, 1), (0, 2), (1, 2)]
|
||
|
self.k3nodes = [0, 1, 2]
|
||
|
self.K3 = self.Graph()
|
||
|
self.K3._adj = self.K3._succ = self.k3adj
|
||
|
self.K3._pred = {0: {1: ed3, 2: ed5}, 1: {0: ed1, 2: ed6}, 2: {0: ed2, 1: ed4}}
|
||
|
self.K3._node = {}
|
||
|
self.K3._node[0] = {}
|
||
|
self.K3._node[1] = {}
|
||
|
self.K3._node[2] = {}
|
||
|
|
||
|
ed1, ed2 = ({}, {})
|
||
|
self.P3 = self.Graph()
|
||
|
self.P3._adj = {0: {1: ed1}, 1: {2: ed2}, 2: {}}
|
||
|
self.P3._succ = self.P3._adj
|
||
|
self.P3._pred = {0: {}, 1: {0: ed1}, 2: {1: ed2}}
|
||
|
self.P3._node = {}
|
||
|
self.P3._node[0] = {}
|
||
|
self.P3._node[1] = {}
|
||
|
self.P3._node[2] = {}
|
||
|
|
||
|
def test_data_input(self):
|
||
|
G = self.Graph({1: [2], 2: [1]}, name="test")
|
||
|
assert G.name == "test"
|
||
|
assert sorted(G.adj.items()) == [(1, {2: {}}), (2, {1: {}})]
|
||
|
assert sorted(G.succ.items()) == [(1, {2: {}}), (2, {1: {}})]
|
||
|
assert sorted(G.pred.items()) == [(1, {2: {}}), (2, {1: {}})]
|
||
|
|
||
|
def test_add_edge(self):
|
||
|
G = self.Graph()
|
||
|
G.add_edge(0, 1)
|
||
|
assert G.adj == {0: {1: {}}, 1: {}}
|
||
|
assert G.succ == {0: {1: {}}, 1: {}}
|
||
|
assert G.pred == {0: {}, 1: {0: {}}}
|
||
|
G = self.Graph()
|
||
|
G.add_edge(*(0, 1))
|
||
|
assert G.adj == {0: {1: {}}, 1: {}}
|
||
|
assert G.succ == {0: {1: {}}, 1: {}}
|
||
|
assert G.pred == {0: {}, 1: {0: {}}}
|
||
|
|
||
|
def test_add_edges_from(self):
|
||
|
G = self.Graph()
|
||
|
G.add_edges_from([(0, 1), (0, 2, {"data": 3})], data=2)
|
||
|
assert G.adj == {0: {1: {"data": 2}, 2: {"data": 3}}, 1: {}, 2: {}}
|
||
|
assert G.succ == {0: {1: {"data": 2}, 2: {"data": 3}}, 1: {}, 2: {}}
|
||
|
assert G.pred == {0: {}, 1: {0: {"data": 2}}, 2: {0: {"data": 3}}}
|
||
|
|
||
|
with pytest.raises(nx.NetworkXError):
|
||
|
G.add_edges_from([(0,)]) # too few in tuple
|
||
|
with pytest.raises(nx.NetworkXError):
|
||
|
G.add_edges_from([(0, 1, 2, 3)]) # too many in tuple
|
||
|
with pytest.raises(TypeError):
|
||
|
G.add_edges_from([0]) # not a tuple
|
||
|
|
||
|
def test_remove_edge(self):
|
||
|
G = self.K3.copy()
|
||
|
G.remove_edge(0, 1)
|
||
|
assert G.succ == {0: {2: {}}, 1: {0: {}, 2: {}}, 2: {0: {}, 1: {}}}
|
||
|
assert G.pred == {0: {1: {}, 2: {}}, 1: {2: {}}, 2: {0: {}, 1: {}}}
|
||
|
with pytest.raises(nx.NetworkXError):
|
||
|
G.remove_edge(-1, 0)
|
||
|
|
||
|
def test_remove_edges_from(self):
|
||
|
G = self.K3.copy()
|
||
|
G.remove_edges_from([(0, 1)])
|
||
|
assert G.succ == {0: {2: {}}, 1: {0: {}, 2: {}}, 2: {0: {}, 1: {}}}
|
||
|
assert G.pred == {0: {1: {}, 2: {}}, 1: {2: {}}, 2: {0: {}, 1: {}}}
|
||
|
G.remove_edges_from([(0, 0)]) # silent fail
|
||
|
|
||
|
def test_clear(self):
|
||
|
G = self.K3
|
||
|
G.graph["name"] = "K3"
|
||
|
G.clear()
|
||
|
assert list(G.nodes) == []
|
||
|
assert G.succ == {}
|
||
|
assert G.pred == {}
|
||
|
assert G.graph == {}
|
||
|
|
||
|
def test_clear_edges(self):
|
||
|
G = self.K3
|
||
|
G.graph["name"] = "K3"
|
||
|
nodes = list(G.nodes)
|
||
|
G.clear_edges()
|
||
|
assert list(G.nodes) == nodes
|
||
|
expected = {0: {}, 1: {}, 2: {}}
|
||
|
assert G.succ == expected
|
||
|
assert G.pred == expected
|
||
|
assert list(G.edges) == []
|
||
|
assert G.graph["name"] == "K3"
|
||
|
|
||
|
|
||
|
class TestEdgeSubgraph(_TestGraphEdgeSubgraph):
|
||
|
"""Unit tests for the :meth:`DiGraph.edge_subgraph` method."""
|
||
|
|
||
|
def setup_method(self):
|
||
|
# Create a doubly-linked path graph on five nodes.
|
||
|
G = nx.DiGraph(nx.path_graph(5))
|
||
|
# Add some node, edge, and graph attributes.
|
||
|
for i in range(5):
|
||
|
G.nodes[i]["name"] = f"node{i}"
|
||
|
G.edges[0, 1]["name"] = "edge01"
|
||
|
G.edges[3, 4]["name"] = "edge34"
|
||
|
G.graph["name"] = "graph"
|
||
|
# Get the subgraph induced by the first and last edges.
|
||
|
self.G = G
|
||
|
self.H = G.edge_subgraph([(0, 1), (3, 4)])
|
||
|
|
||
|
def test_pred_succ(self):
|
||
|
"""Test that nodes are added to predecessors and successors.
|
||
|
|
||
|
For more information, see GitHub issue #2370.
|
||
|
|
||
|
"""
|
||
|
G = nx.DiGraph()
|
||
|
G.add_edge(0, 1)
|
||
|
H = G.edge_subgraph([(0, 1)])
|
||
|
assert list(H.predecessors(0)) == []
|
||
|
assert list(H.successors(0)) == [1]
|
||
|
assert list(H.predecessors(1)) == [0]
|
||
|
assert list(H.successors(1)) == []
|