95 lines
3.4 KiB
Python
95 lines
3.4 KiB
Python
|
"""
|
||
|
This script is used to generate test data for joblib/test/test_numpy_pickle.py
|
||
|
"""
|
||
|
|
||
|
import sys
|
||
|
import re
|
||
|
|
||
|
# pytest needs to be able to import this module even when numpy is
|
||
|
# not installed
|
||
|
try:
|
||
|
import numpy as np
|
||
|
except ImportError:
|
||
|
np = None
|
||
|
|
||
|
import joblib
|
||
|
|
||
|
|
||
|
def get_joblib_version(joblib_version=joblib.__version__):
|
||
|
"""Normalize joblib version by removing suffix.
|
||
|
|
||
|
>>> get_joblib_version('0.8.4')
|
||
|
'0.8.4'
|
||
|
>>> get_joblib_version('0.8.4b1')
|
||
|
'0.8.4'
|
||
|
>>> get_joblib_version('0.9.dev0')
|
||
|
'0.9'
|
||
|
"""
|
||
|
matches = [re.match(r'(\d+).*', each)
|
||
|
for each in joblib_version.split('.')]
|
||
|
return '.'.join([m.group(1) for m in matches if m is not None])
|
||
|
|
||
|
|
||
|
def write_test_pickle(to_pickle, args):
|
||
|
kwargs = {}
|
||
|
compress = args.compress
|
||
|
method = args.method
|
||
|
joblib_version = get_joblib_version()
|
||
|
py_version = '{0[0]}{0[1]}'.format(sys.version_info)
|
||
|
numpy_version = ''.join(np.__version__.split('.')[:2])
|
||
|
|
||
|
# The game here is to generate the right filename according to the options.
|
||
|
body = '_compressed' if (compress and method == 'zlib') else ''
|
||
|
if compress:
|
||
|
if method == 'zlib':
|
||
|
kwargs['compress'] = True
|
||
|
extension = '.gz'
|
||
|
else:
|
||
|
kwargs['compress'] = (method, 3)
|
||
|
extension = '.pkl.{}'.format(method)
|
||
|
if args.cache_size:
|
||
|
kwargs['cache_size'] = 0
|
||
|
body += '_cache_size'
|
||
|
else:
|
||
|
extension = '.pkl'
|
||
|
|
||
|
pickle_filename = 'joblib_{}{}_pickle_py{}_np{}{}'.format(
|
||
|
joblib_version, body, py_version, numpy_version, extension)
|
||
|
|
||
|
try:
|
||
|
joblib.dump(to_pickle, pickle_filename, **kwargs)
|
||
|
except Exception as e:
|
||
|
# With old python version (=< 3.3.), we can arrive there when
|
||
|
# dumping compressed pickle with LzmaFile.
|
||
|
print("Error: cannot generate file '{}' with arguments '{}'. "
|
||
|
"Error was: {}".format(pickle_filename, kwargs, e))
|
||
|
else:
|
||
|
print("File '{}' generated successfuly.".format(pickle_filename))
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
import argparse
|
||
|
parser = argparse.ArgumentParser(description="Joblib pickle data "
|
||
|
"generator.")
|
||
|
parser.add_argument('--cache_size', action="store_true",
|
||
|
help="Force creation of companion numpy "
|
||
|
"files for pickled arrays.")
|
||
|
parser.add_argument('--compress', action="store_true",
|
||
|
help="Generate compress pickles.")
|
||
|
parser.add_argument('--method', type=str, default='zlib',
|
||
|
choices=['zlib', 'gzip', 'bz2', 'xz', 'lzma', 'lz4'],
|
||
|
help="Set compression method.")
|
||
|
# We need to be specific about dtypes in particular endianness
|
||
|
# because the pickles can be generated on one architecture and
|
||
|
# the tests run on another one. See
|
||
|
# https://github.com/joblib/joblib/issues/279.
|
||
|
to_pickle = [np.arange(5, dtype=np.dtype('<i8')),
|
||
|
np.arange(5, dtype=np.dtype('<f8')),
|
||
|
np.array([1, 'abc', {'a': 1, 'b': 2}], dtype='O'),
|
||
|
# all possible bytes as a byte string
|
||
|
np.arange(256, dtype=np.uint8).tobytes(),
|
||
|
np.matrix([0, 1, 2], dtype=np.dtype('<i8')),
|
||
|
# unicode string with non-ascii chars
|
||
|
u"C'est l'\xe9t\xe9 !"]
|
||
|
|
||
|
write_test_pickle(to_pickle, parser.parse_args())
|