136 lines
3.8 KiB
Python
136 lines
3.8 KiB
Python
|
import numpy as np
|
||
|
from matplotlib import lines
|
||
|
|
||
|
__all__ = ['CanvasToolBase', 'ToolHandles']
|
||
|
|
||
|
|
||
|
def _pass(*args):
|
||
|
pass
|
||
|
|
||
|
|
||
|
class CanvasToolBase(object):
|
||
|
"""Base canvas tool for matplotlib axes.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
manager : Viewer or PlotPlugin.
|
||
|
Skimage viewer or plot plugin object.
|
||
|
on_move : function
|
||
|
Function called whenever a control handle is moved.
|
||
|
This function must accept the end points of line as the only argument.
|
||
|
on_release : function
|
||
|
Function called whenever the control handle is released.
|
||
|
on_enter : function
|
||
|
Function called whenever the "enter" key is pressed.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, manager, on_move=None, on_enter=None, on_release=None,
|
||
|
useblit=True, ax=None):
|
||
|
self.manager = manager
|
||
|
self.ax = manager.ax
|
||
|
self.artists = []
|
||
|
self.active = True
|
||
|
|
||
|
self.callback_on_move = _pass if on_move is None else on_move
|
||
|
self.callback_on_enter = _pass if on_enter is None else on_enter
|
||
|
self.callback_on_release = _pass if on_release is None else on_release
|
||
|
|
||
|
def ignore(self, event):
|
||
|
"""Return True if event should be ignored.
|
||
|
|
||
|
This method (or a version of it) should be called at the beginning
|
||
|
of any event callback.
|
||
|
"""
|
||
|
return not self.active
|
||
|
|
||
|
def hit_test(self, event):
|
||
|
return False
|
||
|
|
||
|
def redraw(self):
|
||
|
self.manager.redraw()
|
||
|
|
||
|
def set_visible(self, val):
|
||
|
for artist in self.artists:
|
||
|
artist.set_visible(val)
|
||
|
|
||
|
def on_key_press(self, event):
|
||
|
if event.key == 'enter':
|
||
|
self.callback_on_enter(self.geometry)
|
||
|
self.set_visible(False)
|
||
|
self.manager.redraw()
|
||
|
|
||
|
def on_mouse_press(self, event):
|
||
|
pass
|
||
|
|
||
|
def on_mouse_release(self, event):
|
||
|
pass
|
||
|
|
||
|
def on_move(self, event):
|
||
|
pass
|
||
|
|
||
|
def on_scroll(self, event):
|
||
|
pass
|
||
|
|
||
|
def remove(self):
|
||
|
self.manager.remove_tool(self)
|
||
|
|
||
|
@property
|
||
|
def geometry(self):
|
||
|
"""Geometry information that gets passed to callback functions."""
|
||
|
return None
|
||
|
|
||
|
|
||
|
class ToolHandles(object):
|
||
|
"""Control handles for canvas tools.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
ax : :class:`matplotlib.axes.Axes`
|
||
|
Matplotlib axes where tool handles are displayed.
|
||
|
x, y : 1D arrays
|
||
|
Coordinates of control handles.
|
||
|
marker : str
|
||
|
Shape of marker used to display handle. See `matplotlib.pyplot.plot`.
|
||
|
marker_props : dict
|
||
|
Additional marker properties. See :class:`matplotlib.lines.Line2D`.
|
||
|
"""
|
||
|
def __init__(self, ax, x, y, marker='o', marker_props=None):
|
||
|
self.ax = ax
|
||
|
|
||
|
props = dict(marker=marker, markersize=7, mfc='w', ls='none',
|
||
|
alpha=0.5, visible=False)
|
||
|
props.update(marker_props if marker_props is not None else {})
|
||
|
self._markers = lines.Line2D(x, y, animated=True, **props)
|
||
|
self.ax.add_line(self._markers)
|
||
|
self.artist = self._markers
|
||
|
|
||
|
@property
|
||
|
def x(self):
|
||
|
return self._markers.get_xdata()
|
||
|
|
||
|
@property
|
||
|
def y(self):
|
||
|
return self._markers.get_ydata()
|
||
|
|
||
|
def set_data(self, pts, y=None):
|
||
|
"""Set x and y positions of handles"""
|
||
|
if y is not None:
|
||
|
x = pts
|
||
|
pts = np.array([x, y])
|
||
|
self._markers.set_data(pts)
|
||
|
|
||
|
def set_visible(self, val):
|
||
|
self._markers.set_visible(val)
|
||
|
|
||
|
def set_animated(self, val):
|
||
|
self._markers.set_animated(val)
|
||
|
|
||
|
def closest(self, x, y):
|
||
|
"""Return index and pixel distance to closest index."""
|
||
|
pts = np.transpose((self.x, self.y))
|
||
|
# Transform data coordinates to pixel coordinates.
|
||
|
pts = self.ax.transData.transform(pts)
|
||
|
diff = pts - ((x, y))
|
||
|
dist = np.sqrt(np.sum(diff**2, axis=1))
|
||
|
return np.argmin(dist), np.min(dist)
|