1430 lines
42 KiB
Python
1430 lines
42 KiB
Python
|
import math
|
||
|
import numpy as np
|
||
|
from scipy import spatial
|
||
|
import textwrap
|
||
|
|
||
|
from .._shared.utils import get_bound_method_class, safe_as_int
|
||
|
|
||
|
|
||
|
def _to_ndimage_mode(mode):
|
||
|
"""Convert from `numpy.pad` mode name to the corresponding ndimage mode."""
|
||
|
mode_translation_dict = dict(edge='nearest', symmetric='reflect',
|
||
|
reflect='mirror')
|
||
|
if mode in mode_translation_dict:
|
||
|
mode = mode_translation_dict[mode]
|
||
|
return mode
|
||
|
|
||
|
|
||
|
def _center_and_normalize_points(points):
|
||
|
"""Center and normalize image points.
|
||
|
|
||
|
The points are transformed in a two-step procedure that is expressed
|
||
|
as a transformation matrix. The matrix of the resulting points is usually
|
||
|
better conditioned than the matrix of the original points.
|
||
|
|
||
|
Center the image points, such that the new coordinate system has its
|
||
|
origin at the centroid of the image points.
|
||
|
|
||
|
Normalize the image points, such that the mean distance from the points
|
||
|
to the origin of the coordinate system is sqrt(2).
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
points : (N, 2) array
|
||
|
The coordinates of the image points.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
matrix : (3, 3) array
|
||
|
The transformation matrix to obtain the new points.
|
||
|
new_points : (N, 2) array
|
||
|
The transformed image points.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Hartley, Richard I. "In defense of the eight-point algorithm."
|
||
|
Pattern Analysis and Machine Intelligence, IEEE Transactions on 19.6
|
||
|
(1997): 580-593.
|
||
|
|
||
|
"""
|
||
|
|
||
|
centroid = np.mean(points, axis=0)
|
||
|
|
||
|
rms = math.sqrt(np.sum((points - centroid) ** 2) / points.shape[0])
|
||
|
|
||
|
norm_factor = math.sqrt(2) / rms
|
||
|
|
||
|
matrix = np.array([[norm_factor, 0, -norm_factor * centroid[0]],
|
||
|
[0, norm_factor, -norm_factor * centroid[1]],
|
||
|
[0, 0, 1]])
|
||
|
|
||
|
pointsh = np.row_stack([points.T, np.ones((points.shape[0]),)])
|
||
|
|
||
|
new_pointsh = (matrix @ pointsh).T
|
||
|
|
||
|
new_points = new_pointsh[:, :2]
|
||
|
new_points[:, 0] /= new_pointsh[:, 2]
|
||
|
new_points[:, 1] /= new_pointsh[:, 2]
|
||
|
|
||
|
return matrix, new_points
|
||
|
|
||
|
|
||
|
def _umeyama(src, dst, estimate_scale):
|
||
|
"""Estimate N-D similarity transformation with or without scaling.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
src : (M, N) array
|
||
|
Source coordinates.
|
||
|
dst : (M, N) array
|
||
|
Destination coordinates.
|
||
|
estimate_scale : bool
|
||
|
Whether to estimate scaling factor.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
T : (N + 1, N + 1)
|
||
|
The homogeneous similarity transformation matrix. The matrix contains
|
||
|
NaN values only if the problem is not well-conditioned.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] "Least-squares estimation of transformation parameters between two
|
||
|
point patterns", Shinji Umeyama, PAMI 1991, :DOI:`10.1109/34.88573`
|
||
|
|
||
|
"""
|
||
|
|
||
|
num = src.shape[0]
|
||
|
dim = src.shape[1]
|
||
|
|
||
|
# Compute mean of src and dst.
|
||
|
src_mean = src.mean(axis=0)
|
||
|
dst_mean = dst.mean(axis=0)
|
||
|
|
||
|
# Subtract mean from src and dst.
|
||
|
src_demean = src - src_mean
|
||
|
dst_demean = dst - dst_mean
|
||
|
|
||
|
# Eq. (38).
|
||
|
A = dst_demean.T @ src_demean / num
|
||
|
|
||
|
# Eq. (39).
|
||
|
d = np.ones((dim,), dtype=np.double)
|
||
|
if np.linalg.det(A) < 0:
|
||
|
d[dim - 1] = -1
|
||
|
|
||
|
T = np.eye(dim + 1, dtype=np.double)
|
||
|
|
||
|
U, S, V = np.linalg.svd(A)
|
||
|
|
||
|
# Eq. (40) and (43).
|
||
|
rank = np.linalg.matrix_rank(A)
|
||
|
if rank == 0:
|
||
|
return np.nan * T
|
||
|
elif rank == dim - 1:
|
||
|
if np.linalg.det(U) * np.linalg.det(V) > 0:
|
||
|
T[:dim, :dim] = U @ V
|
||
|
else:
|
||
|
s = d[dim - 1]
|
||
|
d[dim - 1] = -1
|
||
|
T[:dim, :dim] = U @ np.diag(d) @ V
|
||
|
d[dim - 1] = s
|
||
|
else:
|
||
|
T[:dim, :dim] = U @ np.diag(d) @ V
|
||
|
|
||
|
if estimate_scale:
|
||
|
# Eq. (41) and (42).
|
||
|
scale = 1.0 / src_demean.var(axis=0).sum() * (S @ d)
|
||
|
else:
|
||
|
scale = 1.0
|
||
|
|
||
|
T[:dim, dim] = dst_mean - scale * (T[:dim, :dim] @ src_mean.T)
|
||
|
T[:dim, :dim] *= scale
|
||
|
|
||
|
return T
|
||
|
|
||
|
|
||
|
class GeometricTransform(object):
|
||
|
"""Base class for geometric transformations.
|
||
|
|
||
|
"""
|
||
|
def __call__(self, coords):
|
||
|
"""Apply forward transformation.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
coords : (N, 2) array
|
||
|
Source coordinates.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
coords : (N, 2) array
|
||
|
Destination coordinates.
|
||
|
|
||
|
"""
|
||
|
raise NotImplementedError()
|
||
|
|
||
|
def inverse(self, coords):
|
||
|
"""Apply inverse transformation.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
coords : (N, 2) array
|
||
|
Destination coordinates.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
coords : (N, 2) array
|
||
|
Source coordinates.
|
||
|
|
||
|
"""
|
||
|
raise NotImplementedError()
|
||
|
|
||
|
def residuals(self, src, dst):
|
||
|
"""Determine residuals of transformed destination coordinates.
|
||
|
|
||
|
For each transformed source coordinate the euclidean distance to the
|
||
|
respective destination coordinate is determined.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
src : (N, 2) array
|
||
|
Source coordinates.
|
||
|
dst : (N, 2) array
|
||
|
Destination coordinates.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
residuals : (N, ) array
|
||
|
Residual for coordinate.
|
||
|
|
||
|
"""
|
||
|
return np.sqrt(np.sum((self(src) - dst)**2, axis=1))
|
||
|
|
||
|
def __add__(self, other):
|
||
|
"""Combine this transformation with another.
|
||
|
|
||
|
"""
|
||
|
raise NotImplementedError()
|
||
|
|
||
|
|
||
|
class FundamentalMatrixTransform(GeometricTransform):
|
||
|
"""Fundamental matrix transformation.
|
||
|
|
||
|
The fundamental matrix relates corresponding points between a pair of
|
||
|
uncalibrated images. The matrix transforms homogeneous image points in one
|
||
|
image to epipolar lines in the other image.
|
||
|
|
||
|
The fundamental matrix is only defined for a pair of moving images. In the
|
||
|
case of pure rotation or planar scenes, the homography describes the
|
||
|
geometric relation between two images (`ProjectiveTransform`). If the
|
||
|
intrinsic calibration of the images is known, the essential matrix describes
|
||
|
the metric relation between the two images (`EssentialMatrixTransform`).
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Hartley, Richard, and Andrew Zisserman. Multiple view geometry in
|
||
|
computer vision. Cambridge university press, 2003.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
matrix : (3, 3) array, optional
|
||
|
Fundamental matrix.
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
params : (3, 3) array
|
||
|
Fundamental matrix.
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self, matrix=None):
|
||
|
if matrix is None:
|
||
|
# default to an identity transform
|
||
|
matrix = np.eye(3)
|
||
|
if matrix.shape != (3, 3):
|
||
|
raise ValueError("Invalid shape of transformation matrix")
|
||
|
self.params = matrix
|
||
|
|
||
|
def __call__(self, coords):
|
||
|
"""Apply forward transformation.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
coords : (N, 2) array
|
||
|
Source coordinates.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
coords : (N, 3) array
|
||
|
Epipolar lines in the destination image.
|
||
|
|
||
|
"""
|
||
|
coords_homogeneous = np.column_stack([coords, np.ones(coords.shape[0])])
|
||
|
return coords_homogeneous @ self.params.T
|
||
|
|
||
|
def inverse(self, coords):
|
||
|
"""Apply inverse transformation.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
coords : (N, 2) array
|
||
|
Destination coordinates.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
coords : (N, 3) array
|
||
|
Epipolar lines in the source image.
|
||
|
|
||
|
"""
|
||
|
coords_homogeneous = np.column_stack([coords, np.ones(coords.shape[0])])
|
||
|
return coords_homogeneous @ self.params
|
||
|
|
||
|
def _setup_constraint_matrix(self, src, dst):
|
||
|
"""Setup and solve the homogeneous epipolar constraint matrix::
|
||
|
|
||
|
dst' * F * src = 0.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
src : (N, 2) array
|
||
|
Source coordinates.
|
||
|
dst : (N, 2) array
|
||
|
Destination coordinates.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
F_normalized : (3, 3) array
|
||
|
The normalized solution to the homogeneous system. If the system
|
||
|
is not well-conditioned, this matrix contains NaNs.
|
||
|
src_matrix : (3, 3) array
|
||
|
The transformation matrix to obtain the normalized source
|
||
|
coordinates.
|
||
|
dst_matrix : (3, 3) array
|
||
|
The transformation matrix to obtain the normalized destination
|
||
|
coordinates.
|
||
|
|
||
|
"""
|
||
|
if src.shape != dst.shape:
|
||
|
raise ValueError('src and dst shapes must be identical.')
|
||
|
if src.shape[0] < 8:
|
||
|
raise ValueError('src.shape[0] must be equal or larger than 8.')
|
||
|
|
||
|
# Center and normalize image points for better numerical stability.
|
||
|
try:
|
||
|
src_matrix, src = _center_and_normalize_points(src)
|
||
|
dst_matrix, dst = _center_and_normalize_points(dst)
|
||
|
except ZeroDivisionError:
|
||
|
self.params = np.full((3, 3), np.nan)
|
||
|
return 3 * [np.full((3, 3), np.nan)]
|
||
|
|
||
|
# Setup homogeneous linear equation as dst' * F * src = 0.
|
||
|
A = np.ones((src.shape[0], 9))
|
||
|
A[:, :2] = src
|
||
|
A[:, :3] *= dst[:, 0, np.newaxis]
|
||
|
A[:, 3:5] = src
|
||
|
A[:, 3:6] *= dst[:, 1, np.newaxis]
|
||
|
A[:, 6:8] = src
|
||
|
|
||
|
# Solve for the nullspace of the constraint matrix.
|
||
|
_, _, V = np.linalg.svd(A)
|
||
|
F_normalized = V[-1, :].reshape(3, 3)
|
||
|
|
||
|
return F_normalized, src_matrix, dst_matrix
|
||
|
|
||
|
def estimate(self, src, dst):
|
||
|
"""Estimate fundamental matrix using 8-point algorithm.
|
||
|
|
||
|
The 8-point algorithm requires at least 8 corresponding point pairs for
|
||
|
a well-conditioned solution, otherwise the over-determined solution is
|
||
|
estimated.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
src : (N, 2) array
|
||
|
Source coordinates.
|
||
|
dst : (N, 2) array
|
||
|
Destination coordinates.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
success : bool
|
||
|
True, if model estimation succeeds.
|
||
|
|
||
|
"""
|
||
|
|
||
|
F_normalized, src_matrix, dst_matrix = \
|
||
|
self._setup_constraint_matrix(src, dst)
|
||
|
|
||
|
# Enforcing the internal constraint that two singular values must be
|
||
|
# non-zero and one must be zero.
|
||
|
U, S, V = np.linalg.svd(F_normalized)
|
||
|
S[2] = 0
|
||
|
F = U @ np.diag(S) @ V
|
||
|
|
||
|
self.params = dst_matrix.T @ F @ src_matrix
|
||
|
|
||
|
return True
|
||
|
|
||
|
def residuals(self, src, dst):
|
||
|
"""Compute the Sampson distance.
|
||
|
|
||
|
The Sampson distance is the first approximation to the geometric error.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
src : (N, 2) array
|
||
|
Source coordinates.
|
||
|
dst : (N, 2) array
|
||
|
Destination coordinates.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
residuals : (N, ) array
|
||
|
Sampson distance.
|
||
|
|
||
|
"""
|
||
|
src_homogeneous = np.column_stack([src, np.ones(src.shape[0])])
|
||
|
dst_homogeneous = np.column_stack([dst, np.ones(dst.shape[0])])
|
||
|
|
||
|
F_src = self.params @ src_homogeneous.T
|
||
|
Ft_dst = self.params.T @ dst_homogeneous.T
|
||
|
|
||
|
dst_F_src = np.sum(dst_homogeneous * F_src.T, axis=1)
|
||
|
|
||
|
return np.abs(dst_F_src) / np.sqrt(F_src[0] ** 2 + F_src[1] ** 2
|
||
|
+ Ft_dst[0] ** 2 + Ft_dst[1] ** 2)
|
||
|
|
||
|
|
||
|
class EssentialMatrixTransform(FundamentalMatrixTransform):
|
||
|
"""Essential matrix transformation.
|
||
|
|
||
|
The essential matrix relates corresponding points between a pair of
|
||
|
calibrated images. The matrix transforms normalized, homogeneous image
|
||
|
points in one image to epipolar lines in the other image.
|
||
|
|
||
|
The essential matrix is only defined for a pair of moving images capturing a
|
||
|
non-planar scene. In the case of pure rotation or planar scenes, the
|
||
|
homography describes the geometric relation between two images
|
||
|
(`ProjectiveTransform`). If the intrinsic calibration of the images is
|
||
|
unknown, the fundamental matrix describes the projective relation between
|
||
|
the two images (`FundamentalMatrixTransform`).
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Hartley, Richard, and Andrew Zisserman. Multiple view geometry in
|
||
|
computer vision. Cambridge university press, 2003.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
rotation : (3, 3) array, optional
|
||
|
Rotation matrix of the relative camera motion.
|
||
|
translation : (3, 1) array, optional
|
||
|
Translation vector of the relative camera motion. The vector must
|
||
|
have unit length.
|
||
|
matrix : (3, 3) array, optional
|
||
|
Essential matrix.
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
params : (3, 3) array
|
||
|
Essential matrix.
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self, rotation=None, translation=None, matrix=None):
|
||
|
if rotation is not None:
|
||
|
if translation is None:
|
||
|
raise ValueError("Both rotation and translation required")
|
||
|
if rotation.shape != (3, 3):
|
||
|
raise ValueError("Invalid shape of rotation matrix")
|
||
|
if abs(np.linalg.det(rotation) - 1) > 1e-6:
|
||
|
raise ValueError("Rotation matrix must have unit determinant")
|
||
|
if translation.size != 3:
|
||
|
raise ValueError("Invalid shape of translation vector")
|
||
|
if abs(np.linalg.norm(translation) - 1) > 1e-6:
|
||
|
raise ValueError("Translation vector must have unit length")
|
||
|
# Matrix representation of the cross product for t.
|
||
|
t_x = np.array([0, -translation[2], translation[1],
|
||
|
translation[2], 0, -translation[0],
|
||
|
-translation[1], translation[0], 0]).reshape(3, 3)
|
||
|
self.params = t_x @ rotation
|
||
|
elif matrix is not None:
|
||
|
if matrix.shape != (3, 3):
|
||
|
raise ValueError("Invalid shape of transformation matrix")
|
||
|
self.params = matrix
|
||
|
else:
|
||
|
# default to an identity transform
|
||
|
self.params = np.eye(3)
|
||
|
|
||
|
def estimate(self, src, dst):
|
||
|
"""Estimate essential matrix using 8-point algorithm.
|
||
|
|
||
|
The 8-point algorithm requires at least 8 corresponding point pairs for
|
||
|
a well-conditioned solution, otherwise the over-determined solution is
|
||
|
estimated.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
src : (N, 2) array
|
||
|
Source coordinates.
|
||
|
dst : (N, 2) array
|
||
|
Destination coordinates.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
success : bool
|
||
|
True, if model estimation succeeds.
|
||
|
|
||
|
"""
|
||
|
|
||
|
E_normalized, src_matrix, dst_matrix = \
|
||
|
self._setup_constraint_matrix(src, dst)
|
||
|
|
||
|
# Enforcing the internal constraint that two singular values must be
|
||
|
# equal and one must be zero.
|
||
|
U, S, V = np.linalg.svd(E_normalized)
|
||
|
S[0] = (S[0] + S[1]) / 2.0
|
||
|
S[1] = S[0]
|
||
|
S[2] = 0
|
||
|
E = U @ np.diag(S) @ V
|
||
|
|
||
|
self.params = dst_matrix.T @ E @ src_matrix
|
||
|
|
||
|
return True
|
||
|
|
||
|
|
||
|
class ProjectiveTransform(GeometricTransform):
|
||
|
r"""Projective transformation.
|
||
|
|
||
|
Apply a projective transformation (homography) on coordinates.
|
||
|
|
||
|
For each homogeneous coordinate :math:`\mathbf{x} = [x, y, 1]^T`, its
|
||
|
target position is calculated by multiplying with the given matrix,
|
||
|
:math:`H`, to give :math:`H \mathbf{x}`::
|
||
|
|
||
|
[[a0 a1 a2]
|
||
|
[b0 b1 b2]
|
||
|
[c0 c1 1 ]].
|
||
|
|
||
|
E.g., to rotate by theta degrees clockwise, the matrix should be::
|
||
|
|
||
|
[[cos(theta) -sin(theta) 0]
|
||
|
[sin(theta) cos(theta) 0]
|
||
|
[0 0 1]]
|
||
|
|
||
|
or, to translate x by 10 and y by 20::
|
||
|
|
||
|
[[1 0 10]
|
||
|
[0 1 20]
|
||
|
[0 0 1 ]].
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
matrix : (3, 3) array, optional
|
||
|
Homogeneous transformation matrix.
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
params : (3, 3) array
|
||
|
Homogeneous transformation matrix.
|
||
|
|
||
|
"""
|
||
|
|
||
|
_coeffs = range(8)
|
||
|
|
||
|
def __init__(self, matrix=None):
|
||
|
if matrix is None:
|
||
|
# default to an identity transform
|
||
|
matrix = np.eye(3)
|
||
|
if matrix.shape != (3, 3):
|
||
|
raise ValueError("invalid shape of transformation matrix")
|
||
|
self.params = matrix
|
||
|
|
||
|
@property
|
||
|
def _inv_matrix(self):
|
||
|
return np.linalg.inv(self.params)
|
||
|
|
||
|
def _apply_mat(self, coords, matrix):
|
||
|
coords = np.array(coords, copy=False, ndmin=2)
|
||
|
|
||
|
x, y = np.transpose(coords)
|
||
|
src = np.vstack((x, y, np.ones_like(x)))
|
||
|
dst = src.T @ matrix.T
|
||
|
|
||
|
# below, we will divide by the last dimension of the homogeneous
|
||
|
# coordinate matrix. In order to avoid division by zero,
|
||
|
# we replace exact zeros in this column with a very small number.
|
||
|
dst[dst[:, 2] == 0, 2] = np.finfo(float).eps
|
||
|
# rescale to homogeneous coordinates
|
||
|
dst[:, :2] /= dst[:, 2:3]
|
||
|
|
||
|
return dst[:, :2]
|
||
|
|
||
|
def __call__(self, coords):
|
||
|
"""Apply forward transformation.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
coords : (N, 2) array
|
||
|
Source coordinates.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
coords : (N, 2) array
|
||
|
Destination coordinates.
|
||
|
|
||
|
"""
|
||
|
return self._apply_mat(coords, self.params)
|
||
|
|
||
|
def inverse(self, coords):
|
||
|
"""Apply inverse transformation.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
coords : (N, 2) array
|
||
|
Destination coordinates.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
coords : (N, 2) array
|
||
|
Source coordinates.
|
||
|
|
||
|
"""
|
||
|
return self._apply_mat(coords, self._inv_matrix)
|
||
|
|
||
|
def estimate(self, src, dst):
|
||
|
"""Estimate the transformation from a set of corresponding points.
|
||
|
|
||
|
You can determine the over-, well- and under-determined parameters
|
||
|
with the total least-squares method.
|
||
|
|
||
|
Number of source and destination coordinates must match.
|
||
|
|
||
|
The transformation is defined as::
|
||
|
|
||
|
X = (a0*x + a1*y + a2) / (c0*x + c1*y + 1)
|
||
|
Y = (b0*x + b1*y + b2) / (c0*x + c1*y + 1)
|
||
|
|
||
|
These equations can be transformed to the following form::
|
||
|
|
||
|
0 = a0*x + a1*y + a2 - c0*x*X - c1*y*X - X
|
||
|
0 = b0*x + b1*y + b2 - c0*x*Y - c1*y*Y - Y
|
||
|
|
||
|
which exist for each set of corresponding points, so we have a set of
|
||
|
N * 2 equations. The coefficients appear linearly so we can write
|
||
|
A x = 0, where::
|
||
|
|
||
|
A = [[x y 1 0 0 0 -x*X -y*X -X]
|
||
|
[0 0 0 x y 1 -x*Y -y*Y -Y]
|
||
|
...
|
||
|
...
|
||
|
]
|
||
|
x.T = [a0 a1 a2 b0 b1 b2 c0 c1 c3]
|
||
|
|
||
|
In case of total least-squares the solution of this homogeneous system
|
||
|
of equations is the right singular vector of A which corresponds to the
|
||
|
smallest singular value normed by the coefficient c3.
|
||
|
|
||
|
In case of the affine transformation the coefficients c0 and c1 are 0.
|
||
|
Thus the system of equations is::
|
||
|
|
||
|
A = [[x y 1 0 0 0 -X]
|
||
|
[0 0 0 x y 1 -Y]
|
||
|
...
|
||
|
...
|
||
|
]
|
||
|
x.T = [a0 a1 a2 b0 b1 b2 c3]
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
src : (N, 2) array
|
||
|
Source coordinates.
|
||
|
dst : (N, 2) array
|
||
|
Destination coordinates.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
success : bool
|
||
|
True, if model estimation succeeds.
|
||
|
|
||
|
"""
|
||
|
|
||
|
try:
|
||
|
src_matrix, src = _center_and_normalize_points(src)
|
||
|
dst_matrix, dst = _center_and_normalize_points(dst)
|
||
|
except ZeroDivisionError:
|
||
|
self.params = np.nan * np.empty((3, 3))
|
||
|
return False
|
||
|
|
||
|
xs = src[:, 0]
|
||
|
ys = src[:, 1]
|
||
|
xd = dst[:, 0]
|
||
|
yd = dst[:, 1]
|
||
|
rows = src.shape[0]
|
||
|
|
||
|
# params: a0, a1, a2, b0, b1, b2, c0, c1
|
||
|
A = np.zeros((rows * 2, 9))
|
||
|
A[:rows, 0] = xs
|
||
|
A[:rows, 1] = ys
|
||
|
A[:rows, 2] = 1
|
||
|
A[:rows, 6] = - xd * xs
|
||
|
A[:rows, 7] = - xd * ys
|
||
|
A[rows:, 3] = xs
|
||
|
A[rows:, 4] = ys
|
||
|
A[rows:, 5] = 1
|
||
|
A[rows:, 6] = - yd * xs
|
||
|
A[rows:, 7] = - yd * ys
|
||
|
A[:rows, 8] = xd
|
||
|
A[rows:, 8] = yd
|
||
|
|
||
|
# Select relevant columns, depending on params
|
||
|
A = A[:, list(self._coeffs) + [8]]
|
||
|
|
||
|
_, _, V = np.linalg.svd(A)
|
||
|
# if the last element of the vector corresponding to the smallest
|
||
|
# singular value is close to zero, this implies a degenerate case
|
||
|
# because it is a rank-defective transform, which would map points
|
||
|
# to a line rather than a plane.
|
||
|
if np.isclose(V[-1, -1], 0):
|
||
|
return False
|
||
|
|
||
|
H = np.zeros((3, 3))
|
||
|
# solution is right singular vector that corresponds to smallest
|
||
|
# singular value
|
||
|
H.flat[list(self._coeffs) + [8]] = - V[-1, :-1] / V[-1, -1]
|
||
|
H[2, 2] = 1
|
||
|
|
||
|
# De-center and de-normalize
|
||
|
H = np.linalg.inv(dst_matrix) @ H @ src_matrix
|
||
|
|
||
|
self.params = H
|
||
|
|
||
|
return True
|
||
|
|
||
|
def __add__(self, other):
|
||
|
"""Combine this transformation with another.
|
||
|
|
||
|
"""
|
||
|
if isinstance(other, ProjectiveTransform):
|
||
|
# combination of the same types result in a transformation of this
|
||
|
# type again, otherwise use general projective transformation
|
||
|
if type(self) == type(other):
|
||
|
tform = self.__class__
|
||
|
else:
|
||
|
tform = ProjectiveTransform
|
||
|
return tform(other.params @ self.params)
|
||
|
elif (hasattr(other, '__name__')
|
||
|
and other.__name__ == 'inverse'
|
||
|
and hasattr(get_bound_method_class(other), '_inv_matrix')):
|
||
|
return ProjectiveTransform(other.__self__._inv_matrix @ self.params)
|
||
|
else:
|
||
|
raise TypeError("Cannot combine transformations of differing "
|
||
|
"types.")
|
||
|
|
||
|
def __nice__(self):
|
||
|
"""common 'paramstr' used by __str__ and __repr__"""
|
||
|
npstring = np.array2string(self.params, separator=', ')
|
||
|
paramstr = 'matrix=\n' + textwrap.indent(npstring, ' ')
|
||
|
return paramstr
|
||
|
|
||
|
def __repr__(self):
|
||
|
"""Add standard repr formatting around a __nice__ string"""
|
||
|
paramstr = self.__nice__()
|
||
|
classname = self.__class__.__name__
|
||
|
classstr = classname
|
||
|
return '<{}({}) at {}>'.format(classstr, paramstr, hex(id(self)))
|
||
|
|
||
|
def __str__(self):
|
||
|
"""Add standard str formatting around a __nice__ string"""
|
||
|
paramstr = self.__nice__()
|
||
|
classname = self.__class__.__name__
|
||
|
classstr = classname
|
||
|
return '<{}({})>'.format(classstr, paramstr)
|
||
|
|
||
|
|
||
|
class AffineTransform(ProjectiveTransform):
|
||
|
"""2D affine transformation.
|
||
|
|
||
|
Has the following form::
|
||
|
|
||
|
X = a0*x + a1*y + a2 =
|
||
|
= sx*x*cos(rotation) - sy*y*sin(rotation + shear) + a2
|
||
|
|
||
|
Y = b0*x + b1*y + b2 =
|
||
|
= sx*x*sin(rotation) + sy*y*cos(rotation + shear) + b2
|
||
|
|
||
|
where ``sx`` and ``sy`` are scale factors in the x and y directions,
|
||
|
and the homogeneous transformation matrix is::
|
||
|
|
||
|
[[a0 a1 a2]
|
||
|
[b0 b1 b2]
|
||
|
[0 0 1]]
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
matrix : (3, 3) array, optional
|
||
|
Homogeneous transformation matrix.
|
||
|
scale : {s as float or (sx, sy) as array, list or tuple}, optional
|
||
|
Scale factor(s). If a single value, it will be assigned to both
|
||
|
sx and sy.
|
||
|
rotation : float, optional
|
||
|
Rotation angle in counter-clockwise direction as radians.
|
||
|
shear : float, optional
|
||
|
Shear angle in counter-clockwise direction as radians.
|
||
|
translation : (tx, ty) as array, list or tuple, optional
|
||
|
Translation parameters.
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
params : (3, 3) array
|
||
|
Homogeneous transformation matrix.
|
||
|
|
||
|
"""
|
||
|
|
||
|
_coeffs = range(6)
|
||
|
|
||
|
def __init__(self, matrix=None, scale=None, rotation=None, shear=None,
|
||
|
translation=None):
|
||
|
params = any(param is not None
|
||
|
for param in (scale, rotation, shear, translation))
|
||
|
|
||
|
if params and matrix is not None:
|
||
|
raise ValueError("You cannot specify the transformation matrix and"
|
||
|
" the implicit parameters at the same time.")
|
||
|
elif matrix is not None:
|
||
|
if matrix.shape != (3, 3):
|
||
|
raise ValueError("Invalid shape of transformation matrix.")
|
||
|
self.params = matrix
|
||
|
elif params:
|
||
|
if scale is None:
|
||
|
scale = (1, 1)
|
||
|
if rotation is None:
|
||
|
rotation = 0
|
||
|
if shear is None:
|
||
|
shear = 0
|
||
|
if translation is None:
|
||
|
translation = (0, 0)
|
||
|
|
||
|
if np.isscalar(scale):
|
||
|
sx = sy = scale
|
||
|
else:
|
||
|
sx, sy = scale
|
||
|
|
||
|
self.params = np.array([
|
||
|
[sx * math.cos(rotation), -sy * math.sin(rotation + shear), 0],
|
||
|
[sx * math.sin(rotation), sy * math.cos(rotation + shear), 0],
|
||
|
[ 0, 0, 1]
|
||
|
])
|
||
|
self.params[0:2, 2] = translation
|
||
|
else:
|
||
|
# default to an identity transform
|
||
|
self.params = np.eye(3)
|
||
|
|
||
|
@property
|
||
|
def scale(self):
|
||
|
sx = math.sqrt(self.params[0, 0] ** 2 + self.params[1, 0] ** 2)
|
||
|
sy = math.sqrt(self.params[0, 1] ** 2 + self.params[1, 1] ** 2)
|
||
|
return sx, sy
|
||
|
|
||
|
@property
|
||
|
def rotation(self):
|
||
|
return math.atan2(self.params[1, 0], self.params[0, 0])
|
||
|
|
||
|
@property
|
||
|
def shear(self):
|
||
|
beta = math.atan2(- self.params[0, 1], self.params[1, 1])
|
||
|
return beta - self.rotation
|
||
|
|
||
|
@property
|
||
|
def translation(self):
|
||
|
return self.params[0:2, 2]
|
||
|
|
||
|
|
||
|
class PiecewiseAffineTransform(GeometricTransform):
|
||
|
"""2D piecewise affine transformation.
|
||
|
|
||
|
Control points are used to define the mapping. The transform is based on
|
||
|
a Delaunay triangulation of the points to form a mesh. Each triangle is
|
||
|
used to find a local affine transform.
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
affines : list of AffineTransform objects
|
||
|
Affine transformations for each triangle in the mesh.
|
||
|
inverse_affines : list of AffineTransform objects
|
||
|
Inverse affine transformations for each triangle in the mesh.
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self):
|
||
|
self._tesselation = None
|
||
|
self._inverse_tesselation = None
|
||
|
self.affines = None
|
||
|
self.inverse_affines = None
|
||
|
|
||
|
def estimate(self, src, dst):
|
||
|
"""Estimate the transformation from a set of corresponding points.
|
||
|
|
||
|
Number of source and destination coordinates must match.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
src : (N, 2) array
|
||
|
Source coordinates.
|
||
|
dst : (N, 2) array
|
||
|
Destination coordinates.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
success : bool
|
||
|
True, if model estimation succeeds.
|
||
|
|
||
|
"""
|
||
|
|
||
|
# forward piecewise affine
|
||
|
# triangulate input positions into mesh
|
||
|
self._tesselation = spatial.Delaunay(src)
|
||
|
# find affine mapping from source positions to destination
|
||
|
self.affines = []
|
||
|
for tri in self._tesselation.vertices:
|
||
|
affine = AffineTransform()
|
||
|
affine.estimate(src[tri, :], dst[tri, :])
|
||
|
self.affines.append(affine)
|
||
|
|
||
|
# inverse piecewise affine
|
||
|
# triangulate input positions into mesh
|
||
|
self._inverse_tesselation = spatial.Delaunay(dst)
|
||
|
# find affine mapping from source positions to destination
|
||
|
self.inverse_affines = []
|
||
|
for tri in self._inverse_tesselation.vertices:
|
||
|
affine = AffineTransform()
|
||
|
affine.estimate(dst[tri, :], src[tri, :])
|
||
|
self.inverse_affines.append(affine)
|
||
|
|
||
|
return True
|
||
|
|
||
|
def __call__(self, coords):
|
||
|
"""Apply forward transformation.
|
||
|
|
||
|
Coordinates outside of the mesh will be set to `- 1`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
coords : (N, 2) array
|
||
|
Source coordinates.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
coords : (N, 2) array
|
||
|
Transformed coordinates.
|
||
|
|
||
|
"""
|
||
|
|
||
|
out = np.empty_like(coords, np.double)
|
||
|
|
||
|
# determine triangle index for each coordinate
|
||
|
simplex = self._tesselation.find_simplex(coords)
|
||
|
|
||
|
# coordinates outside of mesh
|
||
|
out[simplex == -1, :] = -1
|
||
|
|
||
|
for index in range(len(self._tesselation.vertices)):
|
||
|
# affine transform for triangle
|
||
|
affine = self.affines[index]
|
||
|
# all coordinates within triangle
|
||
|
index_mask = simplex == index
|
||
|
|
||
|
out[index_mask, :] = affine(coords[index_mask, :])
|
||
|
|
||
|
return out
|
||
|
|
||
|
def inverse(self, coords):
|
||
|
"""Apply inverse transformation.
|
||
|
|
||
|
Coordinates outside of the mesh will be set to `- 1`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
coords : (N, 2) array
|
||
|
Source coordinates.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
coords : (N, 2) array
|
||
|
Transformed coordinates.
|
||
|
|
||
|
"""
|
||
|
|
||
|
out = np.empty_like(coords, np.double)
|
||
|
|
||
|
# determine triangle index for each coordinate
|
||
|
simplex = self._inverse_tesselation.find_simplex(coords)
|
||
|
|
||
|
# coordinates outside of mesh
|
||
|
out[simplex == -1, :] = -1
|
||
|
|
||
|
for index in range(len(self._inverse_tesselation.vertices)):
|
||
|
# affine transform for triangle
|
||
|
affine = self.inverse_affines[index]
|
||
|
# all coordinates within triangle
|
||
|
index_mask = simplex == index
|
||
|
|
||
|
out[index_mask, :] = affine(coords[index_mask, :])
|
||
|
|
||
|
return out
|
||
|
|
||
|
|
||
|
class EuclideanTransform(ProjectiveTransform):
|
||
|
"""2D Euclidean transformation.
|
||
|
|
||
|
Has the following form::
|
||
|
|
||
|
X = a0 * x - b0 * y + a1 =
|
||
|
= x * cos(rotation) - y * sin(rotation) + a1
|
||
|
|
||
|
Y = b0 * x + a0 * y + b1 =
|
||
|
= x * sin(rotation) + y * cos(rotation) + b1
|
||
|
|
||
|
where the homogeneous transformation matrix is::
|
||
|
|
||
|
[[a0 b0 a1]
|
||
|
[b0 a0 b1]
|
||
|
[0 0 1]]
|
||
|
|
||
|
The Euclidean transformation is a rigid transformation with rotation and
|
||
|
translation parameters. The similarity transformation extends the Euclidean
|
||
|
transformation with a single scaling factor.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
matrix : (3, 3) array, optional
|
||
|
Homogeneous transformation matrix.
|
||
|
rotation : float, optional
|
||
|
Rotation angle in counter-clockwise direction as radians.
|
||
|
translation : (tx, ty) as array, list or tuple, optional
|
||
|
x, y translation parameters.
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
params : (3, 3) array
|
||
|
Homogeneous transformation matrix.
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self, matrix=None, rotation=None, translation=None):
|
||
|
params = any(param is not None
|
||
|
for param in (rotation, translation))
|
||
|
|
||
|
if params and matrix is not None:
|
||
|
raise ValueError("You cannot specify the transformation matrix and"
|
||
|
" the implicit parameters at the same time.")
|
||
|
elif matrix is not None:
|
||
|
if matrix.shape != (3, 3):
|
||
|
raise ValueError("Invalid shape of transformation matrix.")
|
||
|
self.params = matrix
|
||
|
elif params:
|
||
|
if rotation is None:
|
||
|
rotation = 0
|
||
|
if translation is None:
|
||
|
translation = (0, 0)
|
||
|
|
||
|
self.params = np.array([
|
||
|
[math.cos(rotation), - math.sin(rotation), 0],
|
||
|
[math.sin(rotation), math.cos(rotation), 0],
|
||
|
[ 0, 0, 1]
|
||
|
])
|
||
|
self.params[0:2, 2] = translation
|
||
|
else:
|
||
|
# default to an identity transform
|
||
|
self.params = np.eye(3)
|
||
|
|
||
|
def estimate(self, src, dst):
|
||
|
"""Estimate the transformation from a set of corresponding points.
|
||
|
|
||
|
You can determine the over-, well- and under-determined parameters
|
||
|
with the total least-squares method.
|
||
|
|
||
|
Number of source and destination coordinates must match.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
src : (N, 2) array
|
||
|
Source coordinates.
|
||
|
dst : (N, 2) array
|
||
|
Destination coordinates.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
success : bool
|
||
|
True, if model estimation succeeds.
|
||
|
|
||
|
"""
|
||
|
|
||
|
self.params = _umeyama(src, dst, False)
|
||
|
|
||
|
return True
|
||
|
|
||
|
@property
|
||
|
def rotation(self):
|
||
|
return math.atan2(self.params[1, 0], self.params[1, 1])
|
||
|
|
||
|
@property
|
||
|
def translation(self):
|
||
|
return self.params[0:2, 2]
|
||
|
|
||
|
|
||
|
class SimilarityTransform(EuclideanTransform):
|
||
|
"""2D similarity transformation.
|
||
|
|
||
|
Has the following form::
|
||
|
|
||
|
X = a0 * x - b0 * y + a1 =
|
||
|
= s * x * cos(rotation) - s * y * sin(rotation) + a1
|
||
|
|
||
|
Y = b0 * x + a0 * y + b1 =
|
||
|
= s * x * sin(rotation) + s * y * cos(rotation) + b1
|
||
|
|
||
|
where ``s`` is a scale factor and the homogeneous transformation matrix is::
|
||
|
|
||
|
[[a0 b0 a1]
|
||
|
[b0 a0 b1]
|
||
|
[0 0 1]]
|
||
|
|
||
|
The similarity transformation extends the Euclidean transformation with a
|
||
|
single scaling factor in addition to the rotation and translation
|
||
|
parameters.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
matrix : (3, 3) array, optional
|
||
|
Homogeneous transformation matrix.
|
||
|
scale : float, optional
|
||
|
Scale factor.
|
||
|
rotation : float, optional
|
||
|
Rotation angle in counter-clockwise direction as radians.
|
||
|
translation : (tx, ty) as array, list or tuple, optional
|
||
|
x, y translation parameters.
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
params : (3, 3) array
|
||
|
Homogeneous transformation matrix.
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self, matrix=None, scale=None, rotation=None,
|
||
|
translation=None):
|
||
|
params = any(param is not None
|
||
|
for param in (scale, rotation, translation))
|
||
|
|
||
|
if params and matrix is not None:
|
||
|
raise ValueError("You cannot specify the transformation matrix and"
|
||
|
" the implicit parameters at the same time.")
|
||
|
elif matrix is not None:
|
||
|
if matrix.shape != (3, 3):
|
||
|
raise ValueError("Invalid shape of transformation matrix.")
|
||
|
self.params = matrix
|
||
|
elif params:
|
||
|
if scale is None:
|
||
|
scale = 1
|
||
|
if rotation is None:
|
||
|
rotation = 0
|
||
|
if translation is None:
|
||
|
translation = (0, 0)
|
||
|
|
||
|
self.params = np.array([
|
||
|
[math.cos(rotation), - math.sin(rotation), 0],
|
||
|
[math.sin(rotation), math.cos(rotation), 0],
|
||
|
[ 0, 0, 1]
|
||
|
])
|
||
|
self.params[0:2, 0:2] *= scale
|
||
|
self.params[0:2, 2] = translation
|
||
|
else:
|
||
|
# default to an identity transform
|
||
|
self.params = np.eye(3)
|
||
|
|
||
|
def estimate(self, src, dst):
|
||
|
"""Estimate the transformation from a set of corresponding points.
|
||
|
|
||
|
You can determine the over-, well- and under-determined parameters
|
||
|
with the total least-squares method.
|
||
|
|
||
|
Number of source and destination coordinates must match.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
src : (N, 2) array
|
||
|
Source coordinates.
|
||
|
dst : (N, 2) array
|
||
|
Destination coordinates.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
success : bool
|
||
|
True, if model estimation succeeds.
|
||
|
|
||
|
"""
|
||
|
|
||
|
self.params = _umeyama(src, dst, True)
|
||
|
|
||
|
return True
|
||
|
|
||
|
@property
|
||
|
def scale(self):
|
||
|
# det = scale**(# of dimensions), therefore scale = det**(1/2)
|
||
|
return np.sqrt(np.linalg.det(self.params))
|
||
|
|
||
|
|
||
|
class PolynomialTransform(GeometricTransform):
|
||
|
"""2D polynomial transformation.
|
||
|
|
||
|
Has the following form::
|
||
|
|
||
|
X = sum[j=0:order]( sum[i=0:j]( a_ji * x**(j - i) * y**i ))
|
||
|
Y = sum[j=0:order]( sum[i=0:j]( b_ji * x**(j - i) * y**i ))
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
params : (2, N) array, optional
|
||
|
Polynomial coefficients where `N * 2 = (order + 1) * (order + 2)`. So,
|
||
|
a_ji is defined in `params[0, :]` and b_ji in `params[1, :]`.
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
params : (2, N) array
|
||
|
Polynomial coefficients where `N * 2 = (order + 1) * (order + 2)`. So,
|
||
|
a_ji is defined in `params[0, :]` and b_ji in `params[1, :]`.
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self, params=None):
|
||
|
if params is None:
|
||
|
# default to transformation which preserves original coordinates
|
||
|
params = np.array([[0, 1, 0], [0, 0, 1]])
|
||
|
if params.shape[0] != 2:
|
||
|
raise ValueError("invalid shape of transformation parameters")
|
||
|
self.params = params
|
||
|
|
||
|
def estimate(self, src, dst, order=2):
|
||
|
"""Estimate the transformation from a set of corresponding points.
|
||
|
|
||
|
You can determine the over-, well- and under-determined parameters
|
||
|
with the total least-squares method.
|
||
|
|
||
|
Number of source and destination coordinates must match.
|
||
|
|
||
|
The transformation is defined as::
|
||
|
|
||
|
X = sum[j=0:order]( sum[i=0:j]( a_ji * x**(j - i) * y**i ))
|
||
|
Y = sum[j=0:order]( sum[i=0:j]( b_ji * x**(j - i) * y**i ))
|
||
|
|
||
|
These equations can be transformed to the following form::
|
||
|
|
||
|
0 = sum[j=0:order]( sum[i=0:j]( a_ji * x**(j - i) * y**i )) - X
|
||
|
0 = sum[j=0:order]( sum[i=0:j]( b_ji * x**(j - i) * y**i )) - Y
|
||
|
|
||
|
which exist for each set of corresponding points, so we have a set of
|
||
|
N * 2 equations. The coefficients appear linearly so we can write
|
||
|
A x = 0, where::
|
||
|
|
||
|
A = [[1 x y x**2 x*y y**2 ... 0 ... 0 -X]
|
||
|
[0 ... 0 1 x y x**2 x*y y**2 -Y]
|
||
|
...
|
||
|
...
|
||
|
]
|
||
|
x.T = [a00 a10 a11 a20 a21 a22 ... ann
|
||
|
b00 b10 b11 b20 b21 b22 ... bnn c3]
|
||
|
|
||
|
In case of total least-squares the solution of this homogeneous system
|
||
|
of equations is the right singular vector of A which corresponds to the
|
||
|
smallest singular value normed by the coefficient c3.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
src : (N, 2) array
|
||
|
Source coordinates.
|
||
|
dst : (N, 2) array
|
||
|
Destination coordinates.
|
||
|
order : int, optional
|
||
|
Polynomial order (number of coefficients is order + 1).
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
success : bool
|
||
|
True, if model estimation succeeds.
|
||
|
|
||
|
"""
|
||
|
xs = src[:, 0]
|
||
|
ys = src[:, 1]
|
||
|
xd = dst[:, 0]
|
||
|
yd = dst[:, 1]
|
||
|
rows = src.shape[0]
|
||
|
|
||
|
# number of unknown polynomial coefficients
|
||
|
order = safe_as_int(order)
|
||
|
u = (order + 1) * (order + 2)
|
||
|
|
||
|
A = np.zeros((rows * 2, u + 1))
|
||
|
pidx = 0
|
||
|
for j in range(order + 1):
|
||
|
for i in range(j + 1):
|
||
|
A[:rows, pidx] = xs ** (j - i) * ys ** i
|
||
|
A[rows:, pidx + u // 2] = xs ** (j - i) * ys ** i
|
||
|
pidx += 1
|
||
|
|
||
|
A[:rows, -1] = xd
|
||
|
A[rows:, -1] = yd
|
||
|
|
||
|
_, _, V = np.linalg.svd(A)
|
||
|
|
||
|
# solution is right singular vector that corresponds to smallest
|
||
|
# singular value
|
||
|
params = - V[-1, :-1] / V[-1, -1]
|
||
|
|
||
|
self.params = params.reshape((2, u // 2))
|
||
|
|
||
|
return True
|
||
|
|
||
|
def __call__(self, coords):
|
||
|
"""Apply forward transformation.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
coords : (N, 2) array
|
||
|
source coordinates
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
coords : (N, 2) array
|
||
|
Transformed coordinates.
|
||
|
|
||
|
"""
|
||
|
x = coords[:, 0]
|
||
|
y = coords[:, 1]
|
||
|
u = len(self.params.ravel())
|
||
|
# number of coefficients -> u = (order + 1) * (order + 2)
|
||
|
order = int((- 3 + math.sqrt(9 - 4 * (2 - u))) / 2)
|
||
|
dst = np.zeros(coords.shape)
|
||
|
|
||
|
pidx = 0
|
||
|
for j in range(order + 1):
|
||
|
for i in range(j + 1):
|
||
|
dst[:, 0] += self.params[0, pidx] * x ** (j - i) * y ** i
|
||
|
dst[:, 1] += self.params[1, pidx] * x ** (j - i) * y ** i
|
||
|
pidx += 1
|
||
|
|
||
|
return dst
|
||
|
|
||
|
def inverse(self, coords):
|
||
|
raise Exception(
|
||
|
'There is no explicit way to do the inverse polynomial '
|
||
|
'transformation. Instead, estimate the inverse transformation '
|
||
|
'parameters by exchanging source and destination coordinates,'
|
||
|
'then apply the forward transformation.')
|
||
|
|
||
|
|
||
|
TRANSFORMS = {
|
||
|
'euclidean': EuclideanTransform,
|
||
|
'similarity': SimilarityTransform,
|
||
|
'affine': AffineTransform,
|
||
|
'piecewise-affine': PiecewiseAffineTransform,
|
||
|
'projective': ProjectiveTransform,
|
||
|
'fundamental': FundamentalMatrixTransform,
|
||
|
'essential': EssentialMatrixTransform,
|
||
|
'polynomial': PolynomialTransform,
|
||
|
}
|
||
|
|
||
|
|
||
|
def estimate_transform(ttype, src, dst, **kwargs):
|
||
|
"""Estimate 2D geometric transformation parameters.
|
||
|
|
||
|
You can determine the over-, well- and under-determined parameters
|
||
|
with the total least-squares method.
|
||
|
|
||
|
Number of source and destination coordinates must match.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
ttype : {'euclidean', similarity', 'affine', 'piecewise-affine', \
|
||
|
'projective', 'polynomial'}
|
||
|
Type of transform.
|
||
|
kwargs : array or int
|
||
|
Function parameters (src, dst, n, angle)::
|
||
|
|
||
|
NAME / TTYPE FUNCTION PARAMETERS
|
||
|
'euclidean' `src, `dst`
|
||
|
'similarity' `src, `dst`
|
||
|
'affine' `src, `dst`
|
||
|
'piecewise-affine' `src, `dst`
|
||
|
'projective' `src, `dst`
|
||
|
'polynomial' `src, `dst`, `order` (polynomial order,
|
||
|
default order is 2)
|
||
|
|
||
|
Also see examples below.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
tform : :class:`GeometricTransform`
|
||
|
Transform object containing the transformation parameters and providing
|
||
|
access to forward and inverse transformation functions.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from skimage import transform
|
||
|
|
||
|
>>> # estimate transformation parameters
|
||
|
>>> src = np.array([0, 0, 10, 10]).reshape((2, 2))
|
||
|
>>> dst = np.array([12, 14, 1, -20]).reshape((2, 2))
|
||
|
|
||
|
>>> tform = transform.estimate_transform('similarity', src, dst)
|
||
|
|
||
|
>>> np.allclose(tform.inverse(tform(src)), src)
|
||
|
True
|
||
|
|
||
|
>>> # warp image using the estimated transformation
|
||
|
>>> from skimage import data
|
||
|
>>> image = data.camera()
|
||
|
|
||
|
>>> warp(image, inverse_map=tform.inverse) # doctest: +SKIP
|
||
|
|
||
|
>>> # create transformation with explicit parameters
|
||
|
>>> tform2 = transform.SimilarityTransform(scale=1.1, rotation=1,
|
||
|
... translation=(10, 20))
|
||
|
|
||
|
>>> # unite transformations, applied in order from left to right
|
||
|
>>> tform3 = tform + tform2
|
||
|
>>> np.allclose(tform3(src), tform2(tform(src)))
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
ttype = ttype.lower()
|
||
|
if ttype not in TRANSFORMS:
|
||
|
raise ValueError('the transformation type \'%s\' is not'
|
||
|
'implemented' % ttype)
|
||
|
|
||
|
tform = TRANSFORMS[ttype]()
|
||
|
tform.estimate(src, dst, **kwargs)
|
||
|
|
||
|
return tform
|
||
|
|
||
|
|
||
|
def matrix_transform(coords, matrix):
|
||
|
"""Apply 2D matrix transform.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
coords : (N, 2) array
|
||
|
x, y coordinates to transform
|
||
|
matrix : (3, 3) array
|
||
|
Homogeneous transformation matrix.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
coords : (N, 2) array
|
||
|
Transformed coordinates.
|
||
|
|
||
|
"""
|
||
|
return ProjectiveTransform(matrix)(coords)
|