559 lines
20 KiB
Python
559 lines
20 KiB
Python
|
import networkx as nx
|
||
|
import numpy as np
|
||
|
from numpy.lib.stride_tricks import as_strided
|
||
|
from scipy import ndimage as ndi
|
||
|
from scipy import sparse
|
||
|
import math
|
||
|
from ... import measure, segmentation, util, color
|
||
|
|
||
|
|
||
|
def _edge_generator_from_csr(csr_matrix):
|
||
|
"""Yield weighted edge triples for use by NetworkX from a CSR matrix.
|
||
|
|
||
|
This function is a straight rewrite of
|
||
|
`networkx.convert_matrix._csr_gen_triples`. Since that is a private
|
||
|
function, it is safer to include our own here.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
csr_matrix : scipy.sparse.csr_matrix
|
||
|
The input matrix. An edge (i, j, w) will be yielded if there is a
|
||
|
data value for coordinates (i, j) in the matrix, even if that value
|
||
|
is 0.
|
||
|
|
||
|
Yields
|
||
|
------
|
||
|
i, j, w : (int, int, float) tuples
|
||
|
Each value `w` in the matrix along with its coordinates (i, j).
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
|
||
|
>>> dense = np.eye(2, dtype=np.float)
|
||
|
>>> csr = sparse.csr_matrix(dense)
|
||
|
>>> edges = _edge_generator_from_csr(csr)
|
||
|
>>> list(edges)
|
||
|
[(0, 0, 1.0), (1, 1, 1.0)]
|
||
|
"""
|
||
|
nrows = csr_matrix.shape[0]
|
||
|
values = csr_matrix.data
|
||
|
indptr = csr_matrix.indptr
|
||
|
col_indices = csr_matrix.indices
|
||
|
for i in range(nrows):
|
||
|
for j in range(indptr[i], indptr[i + 1]):
|
||
|
yield i, col_indices[j], values[j]
|
||
|
|
||
|
|
||
|
def min_weight(graph, src, dst, n):
|
||
|
"""Callback to handle merging nodes by choosing minimum weight.
|
||
|
|
||
|
Returns a dictionary with `"weight"` set as either the weight between
|
||
|
(`src`, `n`) or (`dst`, `n`) in `graph` or the minimum of the two when
|
||
|
both exist.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
graph : RAG
|
||
|
The graph under consideration.
|
||
|
src, dst : int
|
||
|
The verices in `graph` to be merged.
|
||
|
n : int
|
||
|
A neighbor of `src` or `dst` or both.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
data : dict
|
||
|
A dict with the `"weight"` attribute set the weight between
|
||
|
(`src`, `n`) or (`dst`, `n`) in `graph` or the minimum of the two when
|
||
|
both exist.
|
||
|
|
||
|
"""
|
||
|
|
||
|
# cover the cases where n only has edge to either `src` or `dst`
|
||
|
default = {'weight': np.inf}
|
||
|
w1 = graph[n].get(src, default)['weight']
|
||
|
w2 = graph[n].get(dst, default)['weight']
|
||
|
return {'weight': min(w1, w2)}
|
||
|
|
||
|
|
||
|
def _add_edge_filter(values, graph):
|
||
|
"""Create edge in `graph` between central element of `values` and the rest.
|
||
|
|
||
|
Add an edge between the middle element in `values` and
|
||
|
all other elements of `values` into `graph`. ``values[len(values) // 2]``
|
||
|
is expected to be the central value of the footprint used.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
values : array
|
||
|
The array to process.
|
||
|
graph : RAG
|
||
|
The graph to add edges in.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
0 : float
|
||
|
Always returns 0. The return value is required so that `generic_filter`
|
||
|
can put it in the output array, but it is ignored by this filter.
|
||
|
"""
|
||
|
values = values.astype(int)
|
||
|
center = values[len(values) // 2]
|
||
|
for value in values:
|
||
|
if value != center and not graph.has_edge(center, value):
|
||
|
graph.add_edge(center, value)
|
||
|
return 0.
|
||
|
|
||
|
|
||
|
class RAG(nx.Graph):
|
||
|
|
||
|
"""
|
||
|
The Region Adjacency Graph (RAG) of an image, subclasses
|
||
|
`networx.Graph <http://networkx.github.io/documentation/latest/reference/classes/graph.html>`_
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
label_image : array of int
|
||
|
An initial segmentation, with each region labeled as a different
|
||
|
integer. Every unique value in ``label_image`` will correspond to
|
||
|
a node in the graph.
|
||
|
connectivity : int in {1, ..., ``label_image.ndim``}, optional
|
||
|
The connectivity between pixels in ``label_image``. For a 2D image,
|
||
|
a connectivity of 1 corresponds to immediate neighbors up, down,
|
||
|
left, and right, while a connectivity of 2 also includes diagonal
|
||
|
neighbors. See `scipy.ndimage.generate_binary_structure`.
|
||
|
data : networkx Graph specification, optional
|
||
|
Initial or additional edges to pass to the NetworkX Graph
|
||
|
constructor. See `networkx.Graph`. Valid edge specifications
|
||
|
include edge list (list of tuples), NumPy arrays, and SciPy
|
||
|
sparse matrices.
|
||
|
**attr : keyword arguments, optional
|
||
|
Additional attributes to add to the graph.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, label_image=None, connectivity=1, data=None, **attr):
|
||
|
|
||
|
super(RAG, self).__init__(data, **attr)
|
||
|
if self.number_of_nodes() == 0:
|
||
|
self.max_id = 0
|
||
|
else:
|
||
|
self.max_id = max(self.nodes())
|
||
|
|
||
|
if label_image is not None:
|
||
|
fp = ndi.generate_binary_structure(label_image.ndim, connectivity)
|
||
|
# In the next ``ndi.generic_filter`` function, the kwarg
|
||
|
# ``output`` is used to provide a strided array with a single
|
||
|
# 64-bit floating point number, to which the function repeatedly
|
||
|
# writes. This is done because even if we don't care about the
|
||
|
# output, without this, a float array of the same shape as the
|
||
|
# input image will be created and that could be expensive in
|
||
|
# memory consumption.
|
||
|
ndi.generic_filter(
|
||
|
label_image,
|
||
|
function=_add_edge_filter,
|
||
|
footprint=fp,
|
||
|
mode='nearest',
|
||
|
output=as_strided(np.empty((1,), dtype=np.float_),
|
||
|
shape=label_image.shape,
|
||
|
strides=((0,) * label_image.ndim)),
|
||
|
extra_arguments=(self,))
|
||
|
|
||
|
def merge_nodes(self, src, dst, weight_func=min_weight, in_place=True,
|
||
|
extra_arguments=[], extra_keywords={}):
|
||
|
"""Merge node `src` and `dst`.
|
||
|
|
||
|
The new combined node is adjacent to all the neighbors of `src`
|
||
|
and `dst`. `weight_func` is called to decide the weight of edges
|
||
|
incident on the new node.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
src, dst : int
|
||
|
Nodes to be merged.
|
||
|
weight_func : callable, optional
|
||
|
Function to decide the attributes of edges incident on the new
|
||
|
node. For each neighbor `n` for `src and `dst`, `weight_func` will
|
||
|
be called as follows: `weight_func(src, dst, n, *extra_arguments,
|
||
|
**extra_keywords)`. `src`, `dst` and `n` are IDs of vertices in the
|
||
|
RAG object which is in turn a subclass of `networkx.Graph`. It is
|
||
|
expected to return a dict of attributes of the resulting edge.
|
||
|
in_place : bool, optional
|
||
|
If set to `True`, the merged node has the id `dst`, else merged
|
||
|
node has a new id which is returned.
|
||
|
extra_arguments : sequence, optional
|
||
|
The sequence of extra positional arguments passed to
|
||
|
`weight_func`.
|
||
|
extra_keywords : dictionary, optional
|
||
|
The dict of keyword arguments passed to the `weight_func`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
id : int
|
||
|
The id of the new node.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
If `in_place` is `False` the resulting node has a new id, rather than
|
||
|
`dst`.
|
||
|
"""
|
||
|
src_nbrs = set(self.neighbors(src))
|
||
|
dst_nbrs = set(self.neighbors(dst))
|
||
|
neighbors = (src_nbrs | dst_nbrs) - {src, dst}
|
||
|
|
||
|
if in_place:
|
||
|
new = dst
|
||
|
else:
|
||
|
new = self.next_id()
|
||
|
self.add_node(new)
|
||
|
|
||
|
for neighbor in neighbors:
|
||
|
data = weight_func(self, src, new, neighbor, *extra_arguments,
|
||
|
**extra_keywords)
|
||
|
self.add_edge(neighbor, new, attr_dict=data)
|
||
|
|
||
|
self.nodes[new]['labels'] = (self.nodes[src]['labels'] +
|
||
|
self.nodes[dst]['labels'])
|
||
|
self.remove_node(src)
|
||
|
|
||
|
if not in_place:
|
||
|
self.remove_node(dst)
|
||
|
|
||
|
return new
|
||
|
|
||
|
def add_node(self, n, attr_dict=None, **attr):
|
||
|
"""Add node `n` while updating the maximum node id.
|
||
|
|
||
|
.. seealso:: :func:`networkx.Graph.add_node`."""
|
||
|
if attr_dict is None: # compatibility with old networkx
|
||
|
attr_dict = attr
|
||
|
else:
|
||
|
attr_dict.update(attr)
|
||
|
super(RAG, self).add_node(n, **attr_dict)
|
||
|
self.max_id = max(n, self.max_id)
|
||
|
|
||
|
def add_edge(self, u, v, attr_dict=None, **attr):
|
||
|
"""Add an edge between `u` and `v` while updating max node id.
|
||
|
|
||
|
.. seealso:: :func:`networkx.Graph.add_edge`."""
|
||
|
if attr_dict is None: # compatibility with old networkx
|
||
|
attr_dict = attr
|
||
|
else:
|
||
|
attr_dict.update(attr)
|
||
|
super(RAG, self).add_edge(u, v, **attr_dict)
|
||
|
self.max_id = max(u, v, self.max_id)
|
||
|
|
||
|
def copy(self):
|
||
|
"""Copy the graph with its max node id.
|
||
|
|
||
|
.. seealso:: :func:`networkx.Graph.copy`."""
|
||
|
g = super(RAG, self).copy()
|
||
|
g.max_id = self.max_id
|
||
|
return g
|
||
|
|
||
|
def fresh_copy(self):
|
||
|
"""Return a fresh copy graph with the same data structure.
|
||
|
|
||
|
A fresh copy has no nodes, edges or graph attributes. It is
|
||
|
the same data structure as the current graph. This method is
|
||
|
typically used to create an empty version of the graph.
|
||
|
|
||
|
This is required when subclassing Graph with networkx v2 and
|
||
|
does not cause problems for v1. Here is more detail from
|
||
|
the network migrating from 1.x to 2.x document::
|
||
|
|
||
|
With the new GraphViews (SubGraph, ReversedGraph, etc)
|
||
|
you can't assume that ``G.__class__()`` will create a new
|
||
|
instance of the same graph type as ``G``. In fact, the
|
||
|
call signature for ``__class__`` differs depending on
|
||
|
whether ``G`` is a view or a base class. For v2.x you
|
||
|
should use ``G.fresh_copy()`` to create a null graph of
|
||
|
the correct type---ready to fill with nodes and edges.
|
||
|
|
||
|
"""
|
||
|
return RAG()
|
||
|
|
||
|
def next_id(self):
|
||
|
"""Returns the `id` for the new node to be inserted.
|
||
|
|
||
|
The current implementation returns one more than the maximum `id`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
id : int
|
||
|
The `id` of the new node to be inserted.
|
||
|
"""
|
||
|
return self.max_id + 1
|
||
|
|
||
|
def _add_node_silent(self, n):
|
||
|
"""Add node `n` without updating the maximum node id.
|
||
|
|
||
|
This is a convenience method used internally.
|
||
|
|
||
|
.. seealso:: :func:`networkx.Graph.add_node`."""
|
||
|
super(RAG, self).add_node(n)
|
||
|
|
||
|
|
||
|
def rag_mean_color(image, labels, connectivity=2, mode='distance',
|
||
|
sigma=255.0):
|
||
|
"""Compute the Region Adjacency Graph using mean colors.
|
||
|
|
||
|
Given an image and its initial segmentation, this method constructs the
|
||
|
corresponding Region Adjacency Graph (RAG). Each node in the RAG
|
||
|
represents a set of pixels within `image` with the same label in `labels`.
|
||
|
The weight between two adjacent regions represents how similar or
|
||
|
dissimilar two regions are depending on the `mode` parameter.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
image : ndarray, shape(M, N, [..., P,] 3)
|
||
|
Input image.
|
||
|
labels : ndarray, shape(M, N, [..., P])
|
||
|
The labelled image. This should have one dimension less than
|
||
|
`image`. If `image` has dimensions `(M, N, 3)` `labels` should have
|
||
|
dimensions `(M, N)`.
|
||
|
connectivity : int, optional
|
||
|
Pixels with a squared distance less than `connectivity` from each other
|
||
|
are considered adjacent. It can range from 1 to `labels.ndim`. Its
|
||
|
behavior is the same as `connectivity` parameter in
|
||
|
``scipy.ndimage.generate_binary_structure``.
|
||
|
mode : {'distance', 'similarity'}, optional
|
||
|
The strategy to assign edge weights.
|
||
|
|
||
|
'distance' : The weight between two adjacent regions is the
|
||
|
:math:`|c_1 - c_2|`, where :math:`c_1` and :math:`c_2` are the mean
|
||
|
colors of the two regions. It represents the Euclidean distance in
|
||
|
their average color.
|
||
|
|
||
|
'similarity' : The weight between two adjacent is
|
||
|
:math:`e^{-d^2/sigma}` where :math:`d=|c_1 - c_2|`, where
|
||
|
:math:`c_1` and :math:`c_2` are the mean colors of the two regions.
|
||
|
It represents how similar two regions are.
|
||
|
sigma : float, optional
|
||
|
Used for computation when `mode` is "similarity". It governs how
|
||
|
close to each other two colors should be, for their corresponding edge
|
||
|
weight to be significant. A very large value of `sigma` could make
|
||
|
any two colors behave as though they were similar.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
out : RAG
|
||
|
The region adjacency graph.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from skimage import data, segmentation
|
||
|
>>> from skimage.future import graph
|
||
|
>>> img = data.astronaut()
|
||
|
>>> labels = segmentation.slic(img)
|
||
|
>>> rag = graph.rag_mean_color(img, labels)
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Alain Tremeau and Philippe Colantoni
|
||
|
"Regions Adjacency Graph Applied To Color Image Segmentation"
|
||
|
:DOI:`10.1109/83.841950`
|
||
|
"""
|
||
|
graph = RAG(labels, connectivity=connectivity)
|
||
|
|
||
|
for n in graph:
|
||
|
graph.nodes[n].update({'labels': [n],
|
||
|
'pixel count': 0,
|
||
|
'total color': np.array([0, 0, 0],
|
||
|
dtype=np.double)})
|
||
|
|
||
|
for index in np.ndindex(labels.shape):
|
||
|
current = labels[index]
|
||
|
graph.nodes[current]['pixel count'] += 1
|
||
|
graph.nodes[current]['total color'] += image[index]
|
||
|
|
||
|
for n in graph:
|
||
|
graph.nodes[n]['mean color'] = (graph.nodes[n]['total color'] /
|
||
|
graph.nodes[n]['pixel count'])
|
||
|
|
||
|
for x, y, d in graph.edges(data=True):
|
||
|
diff = graph.nodes[x]['mean color'] - graph.nodes[y]['mean color']
|
||
|
diff = np.linalg.norm(diff)
|
||
|
if mode == 'similarity':
|
||
|
d['weight'] = math.e ** (-(diff ** 2) / sigma)
|
||
|
elif mode == 'distance':
|
||
|
d['weight'] = diff
|
||
|
else:
|
||
|
raise ValueError("The mode '%s' is not recognised" % mode)
|
||
|
|
||
|
return graph
|
||
|
|
||
|
|
||
|
def rag_boundary(labels, edge_map, connectivity=2):
|
||
|
""" Comouter RAG based on region boundaries
|
||
|
|
||
|
Given an image's initial segmentation and its edge map this method
|
||
|
constructs the corresponding Region Adjacency Graph (RAG). Each node in the
|
||
|
RAG represents a set of pixels within the image with the same label in
|
||
|
`labels`. The weight between two adjacent regions is the average value
|
||
|
in `edge_map` along their boundary.
|
||
|
|
||
|
labels : ndarray
|
||
|
The labelled image.
|
||
|
edge_map : ndarray
|
||
|
This should have the same shape as that of `labels`. For all pixels
|
||
|
along the boundary between 2 adjacent regions, the average value of the
|
||
|
corresponding pixels in `edge_map` is the edge weight between them.
|
||
|
connectivity : int, optional
|
||
|
Pixels with a squared distance less than `connectivity` from each other
|
||
|
are considered adjacent. It can range from 1 to `labels.ndim`. Its
|
||
|
behavior is the same as `connectivity` parameter in
|
||
|
`scipy.ndimage.filters.generate_binary_structure`.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from skimage import data, segmentation, filters, color
|
||
|
>>> from skimage.future import graph
|
||
|
>>> img = data.chelsea()
|
||
|
>>> labels = segmentation.slic(img)
|
||
|
>>> edge_map = filters.sobel(color.rgb2gray(img))
|
||
|
>>> rag = graph.rag_boundary(labels, edge_map)
|
||
|
|
||
|
"""
|
||
|
|
||
|
conn = ndi.generate_binary_structure(labels.ndim, connectivity)
|
||
|
eroded = ndi.grey_erosion(labels, footprint=conn)
|
||
|
dilated = ndi.grey_dilation(labels, footprint=conn)
|
||
|
boundaries0 = (eroded != labels)
|
||
|
boundaries1 = (dilated != labels)
|
||
|
labels_small = np.concatenate((eroded[boundaries0], labels[boundaries1]))
|
||
|
labels_large = np.concatenate((labels[boundaries0], dilated[boundaries1]))
|
||
|
n = np.max(labels_large) + 1
|
||
|
|
||
|
# use a dummy broadcast array as data for RAG
|
||
|
ones = as_strided(np.ones((1,), dtype=np.float), shape=labels_small.shape,
|
||
|
strides=(0,))
|
||
|
count_matrix = sparse.coo_matrix((ones, (labels_small, labels_large)),
|
||
|
dtype=np.int_, shape=(n, n)).tocsr()
|
||
|
data = np.concatenate((edge_map[boundaries0], edge_map[boundaries1]))
|
||
|
|
||
|
data_coo = sparse.coo_matrix((data, (labels_small, labels_large)))
|
||
|
graph_matrix = data_coo.tocsr()
|
||
|
graph_matrix.data /= count_matrix.data
|
||
|
|
||
|
rag = RAG()
|
||
|
rag.add_weighted_edges_from(_edge_generator_from_csr(graph_matrix),
|
||
|
weight='weight')
|
||
|
rag.add_weighted_edges_from(_edge_generator_from_csr(count_matrix),
|
||
|
weight='count')
|
||
|
|
||
|
for n in rag.nodes():
|
||
|
rag.nodes[n].update({'labels': [n]})
|
||
|
|
||
|
return rag
|
||
|
|
||
|
|
||
|
def show_rag(labels, rag, image, border_color='black', edge_width=1.5,
|
||
|
edge_cmap='magma', img_cmap='bone', in_place=True, ax=None):
|
||
|
"""Show a Region Adjacency Graph on an image.
|
||
|
|
||
|
Given a labelled image and its corresponding RAG, show the nodes and edges
|
||
|
of the RAG on the image with the specified colors. Edges are displayed between
|
||
|
the centroid of the 2 adjacent regions in the image.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
labels : ndarray, shape (M, N)
|
||
|
The labelled image.
|
||
|
rag : RAG
|
||
|
The Region Adjacency Graph.
|
||
|
image : ndarray, shape (M, N[, 3])
|
||
|
Input image. If `colormap` is `None`, the image should be in RGB
|
||
|
format.
|
||
|
border_color : color spec, optional
|
||
|
Color with which the borders between regions are drawn.
|
||
|
edge_width : float, optional
|
||
|
The thickness with which the RAG edges are drawn.
|
||
|
edge_cmap : :py:class:`matplotlib.colors.Colormap`, optional
|
||
|
Any matplotlib colormap with which the edges are drawn.
|
||
|
img_cmap : :py:class:`matplotlib.colors.Colormap`, optional
|
||
|
Any matplotlib colormap with which the image is draw. If set to `None`
|
||
|
the image is drawn as it is.
|
||
|
in_place : bool, optional
|
||
|
If set, the RAG is modified in place. For each node `n` the function
|
||
|
will set a new attribute ``rag.nodes[n]['centroid']``.
|
||
|
ax : :py:class:`matplotlib.axes.Axes`, optional
|
||
|
The axes to draw on. If not specified, new axes are created and drawn
|
||
|
on.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
lc : :py:class:`matplotlib.collections.LineCollection`
|
||
|
A colection of lines that represent the edges of the graph. It can be
|
||
|
passed to the :meth:`matplotlib.figure.Figure.colorbar` function.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from skimage import data, segmentation
|
||
|
>>> from skimage.future import graph
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>>
|
||
|
>>> img = data.coffee()
|
||
|
>>> labels = segmentation.slic(img)
|
||
|
>>> g = graph.rag_mean_color(img, labels)
|
||
|
>>> lc = graph.show_rag(labels, g, img)
|
||
|
>>> cbar = plt.colorbar(lc)
|
||
|
"""
|
||
|
from matplotlib import colors, cm
|
||
|
from matplotlib import pyplot as plt
|
||
|
from matplotlib.collections import LineCollection
|
||
|
|
||
|
if not in_place:
|
||
|
rag = rag.copy()
|
||
|
|
||
|
if ax is None:
|
||
|
fig, ax = plt.subplots()
|
||
|
out = util.img_as_float(image, force_copy=True)
|
||
|
|
||
|
if img_cmap is None:
|
||
|
if image.ndim < 3 or image.shape[2] not in [3, 4]:
|
||
|
msg = 'If colormap is `None`, an RGB or RGBA image should be given'
|
||
|
raise ValueError(msg)
|
||
|
# Ignore the alpha channel
|
||
|
out = image[:, :, :3]
|
||
|
else:
|
||
|
img_cmap = cm.get_cmap(img_cmap)
|
||
|
out = color.rgb2gray(image)
|
||
|
# Ignore the alpha channel
|
||
|
out = img_cmap(out)[:, :, :3]
|
||
|
|
||
|
edge_cmap = cm.get_cmap(edge_cmap)
|
||
|
|
||
|
# Handling the case where one node has multiple labels
|
||
|
# offset is 1 so that regionprops does not ignore 0
|
||
|
offset = 1
|
||
|
map_array = np.arange(labels.max() + 1)
|
||
|
for n, d in rag.nodes(data=True):
|
||
|
for label in d['labels']:
|
||
|
map_array[label] = offset
|
||
|
offset += 1
|
||
|
|
||
|
rag_labels = map_array[labels]
|
||
|
regions = measure.regionprops(rag_labels)
|
||
|
|
||
|
for (n, data), region in zip(rag.nodes(data=True), regions):
|
||
|
data['centroid'] = tuple(map(int, region['centroid']))
|
||
|
|
||
|
cc = colors.ColorConverter()
|
||
|
if border_color is not None:
|
||
|
border_color = cc.to_rgb(border_color)
|
||
|
out = segmentation.mark_boundaries(out, rag_labels, color=border_color)
|
||
|
|
||
|
ax.imshow(out)
|
||
|
|
||
|
# Defining the end points of the edges
|
||
|
# The tuple[::-1] syntax reverses a tuple as matplotlib uses (x,y)
|
||
|
# convention while skimage uses (row, column)
|
||
|
lines = [[rag.nodes[n1]['centroid'][::-1], rag.nodes[n2]['centroid'][::-1]]
|
||
|
for (n1, n2) in rag.edges()]
|
||
|
|
||
|
lc = LineCollection(lines, linewidths=edge_width, cmap=edge_cmap)
|
||
|
edge_weights = [d['weight'] for x, y, d in rag.edges(data=True)]
|
||
|
lc.set_array(np.array(edge_weights))
|
||
|
ax.add_collection(lc)
|
||
|
|
||
|
return lc
|