Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/scipy/io/arff/tests/test_arffread.py

413 lines
13 KiB
Python
Raw Normal View History

import datetime
import os
import sys
from os.path import join as pjoin
from io import StringIO
import numpy as np
from numpy.testing import (assert_array_almost_equal,
assert_array_equal, assert_equal, assert_)
import pytest
from pytest import raises as assert_raises
from scipy.io.arff.arffread import loadarff
from scipy.io.arff.arffread import read_header, ParseArffError
data_path = pjoin(os.path.dirname(__file__), 'data')
test1 = pjoin(data_path, 'test1.arff')
test2 = pjoin(data_path, 'test2.arff')
test3 = pjoin(data_path, 'test3.arff')
test4 = pjoin(data_path, 'test4.arff')
test5 = pjoin(data_path, 'test5.arff')
test6 = pjoin(data_path, 'test6.arff')
test7 = pjoin(data_path, 'test7.arff')
test8 = pjoin(data_path, 'test8.arff')
test9 = pjoin(data_path, 'test9.arff')
test10 = pjoin(data_path, 'test10.arff')
test11 = pjoin(data_path, 'test11.arff')
test_quoted_nominal = pjoin(data_path, 'quoted_nominal.arff')
test_quoted_nominal_spaces = pjoin(data_path, 'quoted_nominal_spaces.arff')
expect4_data = [(0.1, 0.2, 0.3, 0.4, 'class1'),
(-0.1, -0.2, -0.3, -0.4, 'class2'),
(1, 2, 3, 4, 'class3')]
expected_types = ['numeric', 'numeric', 'numeric', 'numeric', 'nominal']
missing = pjoin(data_path, 'missing.arff')
expect_missing_raw = np.array([[1, 5], [2, 4], [np.nan, np.nan]])
expect_missing = np.empty(3, [('yop', float), ('yap', float)])
expect_missing['yop'] = expect_missing_raw[:, 0]
expect_missing['yap'] = expect_missing_raw[:, 1]
class TestData(object):
def test1(self):
# Parsing trivial file with nothing.
self._test(test4)
def test2(self):
# Parsing trivial file with some comments in the data section.
self._test(test5)
def test3(self):
# Parsing trivial file with nominal attribute of 1 character.
self._test(test6)
def _test(self, test_file):
data, meta = loadarff(test_file)
for i in range(len(data)):
for j in range(4):
assert_array_almost_equal(expect4_data[i][j], data[i][j])
assert_equal(meta.types(), expected_types)
def test_filelike(self):
# Test reading from file-like object (StringIO)
with open(test1) as f1:
data1, meta1 = loadarff(f1)
with open(test1) as f2:
data2, meta2 = loadarff(StringIO(f2.read()))
assert_(data1 == data2)
assert_(repr(meta1) == repr(meta2))
@pytest.mark.skipif(sys.version_info < (3, 6),
reason='Passing path-like objects to IO functions requires Python >= 3.6')
def test_path(self):
# Test reading from `pathlib.Path` object
from pathlib import Path
with open(test1) as f1:
data1, meta1 = loadarff(f1)
data2, meta2 = loadarff(Path(test1))
assert_(data1 == data2)
assert_(repr(meta1) == repr(meta2))
class TestMissingData(object):
def test_missing(self):
data, meta = loadarff(missing)
for i in ['yop', 'yap']:
assert_array_almost_equal(data[i], expect_missing[i])
class TestNoData(object):
def test_nodata(self):
# The file nodata.arff has no data in the @DATA section.
# Reading it should result in an array with length 0.
nodata_filename = os.path.join(data_path, 'nodata.arff')
data, meta = loadarff(nodata_filename)
expected_dtype = np.dtype([('sepallength', '<f8'),
('sepalwidth', '<f8'),
('petallength', '<f8'),
('petalwidth', '<f8'),
('class', 'S15')])
assert_equal(data.dtype, expected_dtype)
assert_equal(data.size, 0)
class TestHeader(object):
def test_type_parsing(self):
# Test parsing type of attribute from their value.
with open(test2) as ofile:
rel, attrs = read_header(ofile)
expected = ['numeric', 'numeric', 'numeric', 'numeric', 'numeric',
'numeric', 'string', 'string', 'nominal', 'nominal']
for i in range(len(attrs)):
assert_(attrs[i].type_name == expected[i])
def test_badtype_parsing(self):
# Test parsing wrong type of attribute from their value.
def badtype_read():
with open(test3) as ofile:
_, _ = read_header(ofile)
assert_raises(ParseArffError, badtype_read)
def test_fullheader1(self):
# Parsing trivial header with nothing.
with open(test1) as ofile:
rel, attrs = read_header(ofile)
# Test relation
assert_(rel == 'test1')
# Test numerical attributes
assert_(len(attrs) == 5)
for i in range(4):
assert_(attrs[i].name == 'attr%d' % i)
assert_(attrs[i].type_name == 'numeric')
# Test nominal attribute
assert_(attrs[4].name == 'class')
assert_(attrs[4].values == ('class0', 'class1', 'class2', 'class3'))
def test_dateheader(self):
with open(test7) as ofile:
rel, attrs = read_header(ofile)
assert_(rel == 'test7')
assert_(len(attrs) == 5)
assert_(attrs[0].name == 'attr_year')
assert_(attrs[0].date_format == '%Y')
assert_(attrs[1].name == 'attr_month')
assert_(attrs[1].date_format == '%Y-%m')
assert_(attrs[2].name == 'attr_date')
assert_(attrs[2].date_format == '%Y-%m-%d')
assert_(attrs[3].name == 'attr_datetime_local')
assert_(attrs[3].date_format == '%Y-%m-%d %H:%M')
assert_(attrs[4].name == 'attr_datetime_missing')
assert_(attrs[4].date_format == '%Y-%m-%d %H:%M')
def test_dateheader_unsupported(self):
def read_dateheader_unsupported():
with open(test8) as ofile:
_, _ = read_header(ofile)
assert_raises(ValueError, read_dateheader_unsupported)
class TestDateAttribute(object):
def setup_method(self):
self.data, self.meta = loadarff(test7)
def test_year_attribute(self):
expected = np.array([
'1999',
'2004',
'1817',
'2100',
'2013',
'1631'
], dtype='datetime64[Y]')
assert_array_equal(self.data["attr_year"], expected)
def test_month_attribute(self):
expected = np.array([
'1999-01',
'2004-12',
'1817-04',
'2100-09',
'2013-11',
'1631-10'
], dtype='datetime64[M]')
assert_array_equal(self.data["attr_month"], expected)
def test_date_attribute(self):
expected = np.array([
'1999-01-31',
'2004-12-01',
'1817-04-28',
'2100-09-10',
'2013-11-30',
'1631-10-15'
], dtype='datetime64[D]')
assert_array_equal(self.data["attr_date"], expected)
def test_datetime_local_attribute(self):
expected = np.array([
datetime.datetime(year=1999, month=1, day=31, hour=0, minute=1),
datetime.datetime(year=2004, month=12, day=1, hour=23, minute=59),
datetime.datetime(year=1817, month=4, day=28, hour=13, minute=0),
datetime.datetime(year=2100, month=9, day=10, hour=12, minute=0),
datetime.datetime(year=2013, month=11, day=30, hour=4, minute=55),
datetime.datetime(year=1631, month=10, day=15, hour=20, minute=4)
], dtype='datetime64[m]')
assert_array_equal(self.data["attr_datetime_local"], expected)
def test_datetime_missing(self):
expected = np.array([
'nat',
'2004-12-01T23:59',
'nat',
'nat',
'2013-11-30T04:55',
'1631-10-15T20:04'
], dtype='datetime64[m]')
assert_array_equal(self.data["attr_datetime_missing"], expected)
def test_datetime_timezone(self):
assert_raises(ParseArffError, loadarff, test8)
class TestRelationalAttribute(object):
def setup_method(self):
self.data, self.meta = loadarff(test9)
def test_attributes(self):
assert_equal(len(self.meta._attributes), 1)
relational = list(self.meta._attributes.values())[0]
assert_equal(relational.name, 'attr_date_number')
assert_equal(relational.type_name, 'relational')
assert_equal(len(relational.attributes), 2)
assert_equal(relational.attributes[0].name,
'attr_date')
assert_equal(relational.attributes[0].type_name,
'date')
assert_equal(relational.attributes[1].name,
'attr_number')
assert_equal(relational.attributes[1].type_name,
'numeric')
def test_data(self):
dtype_instance = [('attr_date', 'datetime64[D]'),
('attr_number', np.float_)]
expected = [
np.array([('1999-01-31', 1), ('1935-11-27', 10)],
dtype=dtype_instance),
np.array([('2004-12-01', 2), ('1942-08-13', 20)],
dtype=dtype_instance),
np.array([('1817-04-28', 3)],
dtype=dtype_instance),
np.array([('2100-09-10', 4), ('1957-04-17', 40),
('1721-01-14', 400)],
dtype=dtype_instance),
np.array([('2013-11-30', 5)],
dtype=dtype_instance),
np.array([('1631-10-15', 6)],
dtype=dtype_instance)
]
for i in range(len(self.data["attr_date_number"])):
assert_array_equal(self.data["attr_date_number"][i],
expected[i])
class TestRelationalAttributeLong(object):
def setup_method(self):
self.data, self.meta = loadarff(test10)
def test_attributes(self):
assert_equal(len(self.meta._attributes), 1)
relational = list(self.meta._attributes.values())[0]
assert_equal(relational.name, 'attr_relational')
assert_equal(relational.type_name, 'relational')
assert_equal(len(relational.attributes), 1)
assert_equal(relational.attributes[0].name,
'attr_number')
assert_equal(relational.attributes[0].type_name, 'numeric')
def test_data(self):
dtype_instance = [('attr_number', np.float_)]
expected = np.array([(n,) for n in range(30000)],
dtype=dtype_instance)
assert_array_equal(self.data["attr_relational"][0],
expected)
class TestQuotedNominal(object):
"""
Regression test for issue #10232 : Exception in loadarff with quoted nominal attributes.
"""
def setup_method(self):
self.data, self.meta = loadarff(test_quoted_nominal)
def test_attributes(self):
assert_equal(len(self.meta._attributes), 2)
age, smoker = self.meta._attributes.values()
assert_equal(age.name, 'age')
assert_equal(age.type_name, 'numeric')
assert_equal(smoker.name, 'smoker')
assert_equal(smoker.type_name, 'nominal')
assert_equal(smoker.values, ['yes', 'no'])
def test_data(self):
age_dtype_instance = np.float_
smoker_dtype_instance = '<S3'
age_expected = np.array([
18,
24,
44,
56,
89,
11,
], dtype=age_dtype_instance)
smoker_expected = np.array([
'no',
'yes',
'no',
'no',
'yes',
'no',
], dtype=smoker_dtype_instance)
assert_array_equal(self.data["age"], age_expected)
assert_array_equal(self.data["smoker"], smoker_expected)
class TestQuotedNominalSpaces(object):
"""
Regression test for issue #10232 : Exception in loadarff with quoted nominal attributes.
"""
def setup_method(self):
self.data, self.meta = loadarff(test_quoted_nominal_spaces)
def test_attributes(self):
assert_equal(len(self.meta._attributes), 2)
age, smoker = self.meta._attributes.values()
assert_equal(age.name, 'age')
assert_equal(age.type_name, 'numeric')
assert_equal(smoker.name, 'smoker')
assert_equal(smoker.type_name, 'nominal')
assert_equal(smoker.values, [' yes', 'no '])
def test_data(self):
age_dtype_instance = np.float_
smoker_dtype_instance = '<S5'
age_expected = np.array([
18,
24,
44,
56,
89,
11,
], dtype=age_dtype_instance)
smoker_expected = np.array([
'no ',
' yes',
'no ',
'no ',
' yes',
'no ',
], dtype=smoker_dtype_instance)
assert_array_equal(self.data["age"], age_expected)
assert_array_equal(self.data["smoker"], smoker_expected)