156 lines
5.6 KiB
Python
156 lines
5.6 KiB
Python
|
"""
|
||
|
SciPy: A scientific computing package for Python
|
||
|
================================================
|
||
|
|
||
|
Documentation is available in the docstrings and
|
||
|
online at https://docs.scipy.org.
|
||
|
|
||
|
Contents
|
||
|
--------
|
||
|
SciPy imports all the functions from the NumPy namespace, and in
|
||
|
addition provides:
|
||
|
|
||
|
Subpackages
|
||
|
-----------
|
||
|
Using any of these subpackages requires an explicit import. For example,
|
||
|
``import scipy.cluster``.
|
||
|
|
||
|
::
|
||
|
|
||
|
cluster --- Vector Quantization / Kmeans
|
||
|
fft --- Discrete Fourier transforms
|
||
|
fftpack --- Legacy discrete Fourier transforms
|
||
|
integrate --- Integration routines
|
||
|
interpolate --- Interpolation Tools
|
||
|
io --- Data input and output
|
||
|
linalg --- Linear algebra routines
|
||
|
linalg.blas --- Wrappers to BLAS library
|
||
|
linalg.lapack --- Wrappers to LAPACK library
|
||
|
misc --- Various utilities that don't have
|
||
|
another home.
|
||
|
ndimage --- N-D image package
|
||
|
odr --- Orthogonal Distance Regression
|
||
|
optimize --- Optimization Tools
|
||
|
signal --- Signal Processing Tools
|
||
|
signal.windows --- Window functions
|
||
|
sparse --- Sparse Matrices
|
||
|
sparse.linalg --- Sparse Linear Algebra
|
||
|
sparse.linalg.dsolve --- Linear Solvers
|
||
|
sparse.linalg.dsolve.umfpack --- :Interface to the UMFPACK library:
|
||
|
Conjugate Gradient Method (LOBPCG)
|
||
|
sparse.linalg.eigen --- Sparse Eigenvalue Solvers
|
||
|
sparse.linalg.eigen.lobpcg --- Locally Optimal Block Preconditioned
|
||
|
Conjugate Gradient Method (LOBPCG)
|
||
|
spatial --- Spatial data structures and algorithms
|
||
|
special --- Special functions
|
||
|
stats --- Statistical Functions
|
||
|
|
||
|
Utility tools
|
||
|
-------------
|
||
|
::
|
||
|
|
||
|
test --- Run scipy unittests
|
||
|
show_config --- Show scipy build configuration
|
||
|
show_numpy_config --- Show numpy build configuration
|
||
|
__version__ --- SciPy version string
|
||
|
__numpy_version__ --- Numpy version string
|
||
|
|
||
|
"""
|
||
|
__all__ = ['test']
|
||
|
|
||
|
from numpy import show_config as show_numpy_config
|
||
|
if show_numpy_config is None:
|
||
|
raise ImportError(
|
||
|
"Cannot import SciPy when running from NumPy source directory.")
|
||
|
from numpy import __version__ as __numpy_version__
|
||
|
|
||
|
# Import numpy symbols to scipy name space (DEPRECATED)
|
||
|
from ._lib.deprecation import _deprecated
|
||
|
import numpy as _num
|
||
|
linalg = None
|
||
|
_msg = ('scipy.{0} is deprecated and will be removed in SciPy 2.0.0, '
|
||
|
'use numpy.{0} instead')
|
||
|
# deprecate callable objects, skipping classes
|
||
|
for _key in _num.__all__:
|
||
|
_fun = getattr(_num, _key)
|
||
|
if callable(_fun) and not isinstance(_fun, type):
|
||
|
_fun = _deprecated(_msg.format(_key))(_fun)
|
||
|
globals()[_key] = _fun
|
||
|
from numpy.random import rand, randn
|
||
|
_msg = ('scipy.{0} is deprecated and will be removed in SciPy 2.0.0, '
|
||
|
'use numpy.random.{0} instead')
|
||
|
rand = _deprecated(_msg.format('rand'))(rand)
|
||
|
randn = _deprecated(_msg.format('randn'))(randn)
|
||
|
from numpy.fft import fft, ifft
|
||
|
# fft is especially problematic, so we deprecate it with a shorter window
|
||
|
fft_msg = ('Using scipy.fft as a function is deprecated and will be '
|
||
|
'removed in SciPy 1.5.0, use scipy.fft.fft instead.')
|
||
|
# for wrapping in scipy.fft.__call__, so the stacklevel is one off from the
|
||
|
# usual (2)
|
||
|
_dep_fft = _deprecated(fft_msg, stacklevel=3)(fft)
|
||
|
fft = _deprecated(fft_msg)(fft)
|
||
|
ifft = _deprecated('scipy.ifft is deprecated and will be removed in SciPy '
|
||
|
'2.0.0, use scipy.fft.ifft instead')(ifft)
|
||
|
import numpy.lib.scimath as _sci
|
||
|
_msg = ('scipy.{0} is deprecated and will be removed in SciPy 2.0.0, '
|
||
|
'use numpy.lib.scimath.{0} instead')
|
||
|
for _key in _sci.__all__:
|
||
|
_fun = getattr(_sci, _key)
|
||
|
if callable(_fun):
|
||
|
_fun = _deprecated(_msg.format(_key))(_fun)
|
||
|
globals()[_key] = _fun
|
||
|
|
||
|
__all__ += _num.__all__
|
||
|
__all__ += ['randn', 'rand', 'fft', 'ifft']
|
||
|
|
||
|
del _num
|
||
|
# Remove the linalg imported from NumPy so that the scipy.linalg package can be
|
||
|
# imported.
|
||
|
del linalg
|
||
|
__all__.remove('linalg')
|
||
|
|
||
|
# We first need to detect if we're being called as part of the SciPy
|
||
|
# setup procedure itself in a reliable manner.
|
||
|
try:
|
||
|
__SCIPY_SETUP__
|
||
|
except NameError:
|
||
|
__SCIPY_SETUP__ = False
|
||
|
|
||
|
|
||
|
if __SCIPY_SETUP__:
|
||
|
import sys as _sys
|
||
|
_sys.stderr.write('Running from SciPy source directory.\n')
|
||
|
del _sys
|
||
|
else:
|
||
|
try:
|
||
|
from scipy.__config__ import show as show_config
|
||
|
except ImportError:
|
||
|
msg = """Error importing SciPy: you cannot import SciPy while
|
||
|
being in scipy source directory; please exit the SciPy source
|
||
|
tree first and relaunch your Python interpreter."""
|
||
|
raise ImportError(msg)
|
||
|
|
||
|
from scipy.version import version as __version__
|
||
|
|
||
|
# Allow distributors to run custom init code
|
||
|
from . import _distributor_init
|
||
|
|
||
|
from scipy._lib import _pep440
|
||
|
if _pep440.parse(__numpy_version__) < _pep440.Version('1.14.5'):
|
||
|
import warnings
|
||
|
warnings.warn("NumPy 1.14.5 or above is required for this version of "
|
||
|
"SciPy (detected version %s)" % __numpy_version__,
|
||
|
UserWarning)
|
||
|
|
||
|
del _pep440
|
||
|
|
||
|
from scipy._lib._ccallback import LowLevelCallable
|
||
|
|
||
|
from scipy._lib._testutils import PytestTester
|
||
|
test = PytestTester(__name__)
|
||
|
del PytestTester
|
||
|
|
||
|
# This makes "from scipy import fft" return scipy.fft, not np.fft
|
||
|
del fft
|
||
|
from . import fft
|