251 lines
8.6 KiB
Python
251 lines
8.6 KiB
Python
|
# Copyright (c) 2006-2012 Filip Wasilewski <http://en.ig.ma/>
|
||
|
# Copyright (c) 2012-2016 The PyWavelets Developers
|
||
|
# <https://github.com/PyWavelets/pywt>
|
||
|
# See COPYING for license details.
|
||
|
|
||
|
"""
|
||
|
The thresholding helper module implements the most popular signal thresholding
|
||
|
functions.
|
||
|
"""
|
||
|
|
||
|
from __future__ import division, print_function, absolute_import
|
||
|
import numpy as np
|
||
|
|
||
|
__all__ = ['threshold', 'threshold_firm']
|
||
|
|
||
|
|
||
|
def soft(data, value, substitute=0):
|
||
|
data = np.asarray(data)
|
||
|
magnitude = np.absolute(data)
|
||
|
|
||
|
with np.errstate(divide='ignore'):
|
||
|
# divide by zero okay as np.inf values get clipped, so ignore warning.
|
||
|
thresholded = (1 - value/magnitude)
|
||
|
thresholded.clip(min=0, max=None, out=thresholded)
|
||
|
thresholded = data * thresholded
|
||
|
|
||
|
if substitute == 0:
|
||
|
return thresholded
|
||
|
else:
|
||
|
cond = np.less(magnitude, value)
|
||
|
return np.where(cond, substitute, thresholded)
|
||
|
|
||
|
|
||
|
def nn_garrote(data, value, substitute=0):
|
||
|
"""Non-negative Garrote."""
|
||
|
data = np.asarray(data)
|
||
|
magnitude = np.absolute(data)
|
||
|
|
||
|
with np.errstate(divide='ignore'):
|
||
|
# divide by zero okay as np.inf values get clipped, so ignore warning.
|
||
|
thresholded = (1 - value**2/magnitude**2)
|
||
|
thresholded.clip(min=0, max=None, out=thresholded)
|
||
|
thresholded = data * thresholded
|
||
|
|
||
|
if substitute == 0:
|
||
|
return thresholded
|
||
|
else:
|
||
|
cond = np.less(magnitude, value)
|
||
|
return np.where(cond, substitute, thresholded)
|
||
|
|
||
|
|
||
|
def hard(data, value, substitute=0):
|
||
|
data = np.asarray(data)
|
||
|
cond = np.less(np.absolute(data), value)
|
||
|
return np.where(cond, substitute, data)
|
||
|
|
||
|
|
||
|
def greater(data, value, substitute=0):
|
||
|
data = np.asarray(data)
|
||
|
if np.iscomplexobj(data):
|
||
|
raise ValueError("greater thresholding only supports real data")
|
||
|
return np.where(np.less(data, value), substitute, data)
|
||
|
|
||
|
|
||
|
def less(data, value, substitute=0):
|
||
|
data = np.asarray(data)
|
||
|
if np.iscomplexobj(data):
|
||
|
raise ValueError("less thresholding only supports real data")
|
||
|
return np.where(np.greater(data, value), substitute, data)
|
||
|
|
||
|
|
||
|
thresholding_options = {'soft': soft,
|
||
|
'hard': hard,
|
||
|
'greater': greater,
|
||
|
'less': less,
|
||
|
'garrote': nn_garrote,
|
||
|
# misspelled garrote for backwards compatibility
|
||
|
'garotte': nn_garrote,
|
||
|
}
|
||
|
|
||
|
|
||
|
def threshold(data, value, mode='soft', substitute=0):
|
||
|
"""
|
||
|
Thresholds the input data depending on the mode argument.
|
||
|
|
||
|
In ``soft`` thresholding [1]_, data values with absolute value less than
|
||
|
`param` are replaced with `substitute`. Data values with absolute value
|
||
|
greater or equal to the thresholding value are shrunk toward zero
|
||
|
by `value`. In other words, the new value is
|
||
|
``data/np.abs(data) * np.maximum(np.abs(data) - value, 0)``.
|
||
|
|
||
|
In ``hard`` thresholding, the data values where their absolute value is
|
||
|
less than the value param are replaced with `substitute`. Data values with
|
||
|
absolute value greater or equal to the thresholding value stay untouched.
|
||
|
|
||
|
``garrote`` corresponds to the Non-negative garrote threshold [2]_, [3]_.
|
||
|
It is intermediate between ``hard`` and ``soft`` thresholding. It behaves
|
||
|
like soft thresholding for small data values and approaches hard
|
||
|
thresholding for large data values.
|
||
|
|
||
|
In ``greater`` thresholding, the data is replaced with `substitute` where
|
||
|
data is below the thresholding value. Greater data values pass untouched.
|
||
|
|
||
|
In ``less`` thresholding, the data is replaced with `substitute` where data
|
||
|
is above the thresholding value. Lesser data values pass untouched.
|
||
|
|
||
|
Both ``hard`` and ``soft`` thresholding also support complex-valued data.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
data : array_like
|
||
|
Numeric data.
|
||
|
value : scalar
|
||
|
Thresholding value.
|
||
|
mode : {'soft', 'hard', 'garrote', 'greater', 'less'}
|
||
|
Decides the type of thresholding to be applied on input data. Default
|
||
|
is 'soft'.
|
||
|
substitute : float, optional
|
||
|
Substitute value (default: 0).
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
output : array
|
||
|
Thresholded array.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
threshold_firm
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] D.L. Donoho and I.M. Johnstone. Ideal Spatial Adaptation via
|
||
|
Wavelet Shrinkage. Biometrika. Vol. 81, No. 3, pp.425-455, 1994.
|
||
|
DOI:10.1093/biomet/81.3.425
|
||
|
.. [2] L. Breiman. Better Subset Regression Using the Nonnegative Garrote.
|
||
|
Technometrics, Vol. 37, pp. 373-384, 1995.
|
||
|
DOI:10.2307/1269730
|
||
|
.. [3] H-Y. Gao. Wavelet Shrinkage Denoising Using the Non-Negative
|
||
|
Garrote. Journal of Computational and Graphical Statistics Vol. 7,
|
||
|
No. 4, pp.469-488. 1998.
|
||
|
DOI:10.1080/10618600.1998.10474789
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> import pywt
|
||
|
>>> data = np.linspace(1, 4, 7)
|
||
|
>>> data
|
||
|
array([ 1. , 1.5, 2. , 2.5, 3. , 3.5, 4. ])
|
||
|
>>> pywt.threshold(data, 2, 'soft')
|
||
|
array([ 0. , 0. , 0. , 0.5, 1. , 1.5, 2. ])
|
||
|
>>> pywt.threshold(data, 2, 'hard')
|
||
|
array([ 0. , 0. , 2. , 2.5, 3. , 3.5, 4. ])
|
||
|
>>> pywt.threshold(data, 2, 'garrote')
|
||
|
array([ 0. , 0. , 0. , 0.9 , 1.66666667,
|
||
|
2.35714286, 3. ])
|
||
|
>>> pywt.threshold(data, 2, 'greater')
|
||
|
array([ 0. , 0. , 2. , 2.5, 3. , 3.5, 4. ])
|
||
|
>>> pywt.threshold(data, 2, 'less')
|
||
|
array([ 1. , 1.5, 2. , 0. , 0. , 0. , 0. ])
|
||
|
|
||
|
"""
|
||
|
|
||
|
try:
|
||
|
return thresholding_options[mode](data, value, substitute)
|
||
|
except KeyError:
|
||
|
# Make sure error is always identical by sorting keys
|
||
|
keys = ("'{0}'".format(key) for key in
|
||
|
sorted(thresholding_options.keys()))
|
||
|
raise ValueError("The mode parameter only takes values from: {0}."
|
||
|
.format(', '.join(keys)))
|
||
|
|
||
|
|
||
|
def threshold_firm(data, value_low, value_high):
|
||
|
"""Firm threshold.
|
||
|
|
||
|
The approach is intermediate between soft and hard thresholding [1]_. It
|
||
|
behaves the same as soft-thresholding for values below `value_low` and
|
||
|
the same as hard-thresholding for values above `thresh_high`. For
|
||
|
intermediate values, the thresholded value is in between that corresponding
|
||
|
to soft or hard thresholding.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
data : array-like
|
||
|
The data to threshold. This can be either real or complex-valued.
|
||
|
value_low : float
|
||
|
Any values smaller then `value_low` will be set to zero.
|
||
|
value_high : float
|
||
|
Any values larger than `value_high` will not be modified.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This thresholding technique is also known as semi-soft thresholding [2]_.
|
||
|
|
||
|
For each value, `x`, in `data`. This function computes::
|
||
|
|
||
|
if np.abs(x) <= value_low:
|
||
|
return 0
|
||
|
elif np.abs(x) > value_high:
|
||
|
return x
|
||
|
elif value_low < np.abs(x) and np.abs(x) <= value_high:
|
||
|
return x * value_high * (1 - value_low/x)/(value_high - value_low)
|
||
|
|
||
|
``firm`` is a continuous function (like soft thresholding), but is
|
||
|
unbiased for large values (like hard thresholding).
|
||
|
|
||
|
If ``value_high == value_low`` this function becomes hard-thresholding.
|
||
|
If ``value_high`` is infinity, this function becomes soft-thresholding.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
val_new : array-like
|
||
|
The values after firm thresholding at the specified thresholds.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
threshold
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] H.-Y. Gao and A.G. Bruce. Waveshrink with firm shrinkage.
|
||
|
Statistica Sinica, Vol. 7, pp. 855-874, 1997.
|
||
|
.. [2] A. Bruce and H-Y. Gao. WaveShrink: Shrinkage Functions and
|
||
|
Thresholds. Proc. SPIE 2569, Wavelet Applications in Signal and
|
||
|
Image Processing III, 1995.
|
||
|
DOI:10.1117/12.217582
|
||
|
"""
|
||
|
|
||
|
if value_low < 0:
|
||
|
raise ValueError("value_low must be non-negative.")
|
||
|
|
||
|
if value_high < value_low:
|
||
|
raise ValueError(
|
||
|
"value_high must be greater than or equal to value_low.")
|
||
|
|
||
|
data = np.asarray(data)
|
||
|
magnitude = np.absolute(data)
|
||
|
with np.errstate(divide='ignore'):
|
||
|
# divide by zero okay as np.inf values get clipped, so ignore warning.
|
||
|
vdiff = value_high - value_low
|
||
|
thresholded = value_high * (1 - value_low/magnitude) / vdiff
|
||
|
thresholded.clip(min=0, max=None, out=thresholded)
|
||
|
thresholded = data * thresholded
|
||
|
|
||
|
# restore hard-thresholding behavior for values > value_high
|
||
|
large_vals = np.where(magnitude > value_high)
|
||
|
if np.any(large_vals[0]):
|
||
|
thresholded[large_vals] = data[large_vals]
|
||
|
return thresholded
|