384 lines
13 KiB
Python
384 lines
13 KiB
Python
|
# ===================================================================
|
||
|
#
|
||
|
# Copyright (c) 2014, Legrandin <helderijs@gmail.com>
|
||
|
# All rights reserved.
|
||
|
#
|
||
|
# Redistribution and use in source and binary forms, with or without
|
||
|
# modification, are permitted provided that the following conditions
|
||
|
# are met:
|
||
|
#
|
||
|
# 1. Redistributions of source code must retain the above copyright
|
||
|
# notice, this list of conditions and the following disclaimer.
|
||
|
# 2. Redistributions in binary form must reproduce the above copyright
|
||
|
# notice, this list of conditions and the following disclaimer in
|
||
|
# the documentation and/or other materials provided with the
|
||
|
# distribution.
|
||
|
#
|
||
|
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||
|
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||
|
# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||
|
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||
|
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||
|
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||
|
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
|
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||
|
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
# POSSIBILITY OF SUCH DAMAGE.
|
||
|
# ===================================================================
|
||
|
|
||
|
"""RSA digital signature protocol with appendix according to PKCS#1 PSS.
|
||
|
|
||
|
See RFC3447__ or the `original RSA Labs specification`__.
|
||
|
|
||
|
This scheme is more properly called ``RSASSA-PSS``.
|
||
|
|
||
|
The following example shows how the sender can create the signatue of
|
||
|
a message using their private key:
|
||
|
|
||
|
>>> from Crypto.Signature import pss
|
||
|
>>> from Crypto.Hash import SHA256
|
||
|
>>> from Crypto.PublicKey import RSA
|
||
|
>>> from Crypto import Random
|
||
|
>>>
|
||
|
>>> message = 'To be signed'
|
||
|
>>> key = RSA.importKey(open('privkey.der').read())
|
||
|
>>> h = SHA256.new(message)
|
||
|
>>> signature = pss.new(key).sign(h)
|
||
|
|
||
|
At the receiver side, verification can be done using the public RSA key:
|
||
|
|
||
|
>>> key = RSA.importKey(open('pubkey.der').read())
|
||
|
>>> h = SHA256.new(message)
|
||
|
>>> verifier = pss.new(key)
|
||
|
>>> try:
|
||
|
>>> verifier.verify(h, signature):
|
||
|
>>> print "The signature is authentic."
|
||
|
>>> except (ValueError, TypeError):
|
||
|
>>> print "The signature is not authentic."
|
||
|
|
||
|
:undocumented: __package__
|
||
|
|
||
|
.. __: http://www.ietf.org/rfc/rfc3447.txt
|
||
|
.. __: http://www.rsa.com/rsalabs/node.asp?id=2125
|
||
|
"""
|
||
|
|
||
|
from Crypto.Util.py3compat import b, bchr, bord
|
||
|
import Crypto.Util.number
|
||
|
from Crypto.Util.number import (ceil_div,
|
||
|
long_to_bytes,
|
||
|
bytes_to_long
|
||
|
)
|
||
|
from Crypto.Util.strxor import strxor
|
||
|
from Crypto import Random
|
||
|
|
||
|
|
||
|
class PSS_SigScheme:
|
||
|
"""An instance of the PKCS#1 PSS signature scheme for a specific RSA key."""
|
||
|
|
||
|
def __init__(self, key, mgfunc, saltLen, randfunc):
|
||
|
"""Initialize this PKCS#1 PSS signature scheme object.
|
||
|
|
||
|
:Parameters:
|
||
|
key : an RSA key object
|
||
|
If a private half is given, both signature and
|
||
|
verification are possible.
|
||
|
If a public half is given, only verification is possible.
|
||
|
mgfunc : callable
|
||
|
A mask generation function that accepts two parameters:
|
||
|
a string to use as seed, and the lenth of the mask to
|
||
|
generate, in bytes.
|
||
|
saltLen : integer
|
||
|
Length of the salt, in bytes.
|
||
|
randfunc : callable
|
||
|
A function that returns random bytes.
|
||
|
"""
|
||
|
|
||
|
self._key = key
|
||
|
self._saltLen = saltLen
|
||
|
self._mgfunc = mgfunc
|
||
|
self._randfunc = randfunc
|
||
|
|
||
|
def can_sign(self):
|
||
|
"""Return True if this cipher object can be used
|
||
|
or signing messages."""
|
||
|
return self._key.has_private()
|
||
|
|
||
|
def sign(self, msg_hash):
|
||
|
"""Produce the PKCS#1 PSS signature of a message.
|
||
|
|
||
|
This function is named ``RSASSA-PSS-SIGN``, and is specified in
|
||
|
section 8.1.1 of RFC3447.
|
||
|
|
||
|
:Parameters:
|
||
|
msg_hash : hash object
|
||
|
The hash that was carried out over the message. This is an object
|
||
|
belonging to the `Crypto.Hash` module.
|
||
|
|
||
|
:Return: The PSS signature encoded as a byte string.
|
||
|
:Raise ValueError:
|
||
|
If the RSA key length is not sufficiently long to deal
|
||
|
with the given hash algorithm.
|
||
|
:Raise TypeError:
|
||
|
If the RSA key has no private half.
|
||
|
|
||
|
:attention: Modify the salt length and the mask generation
|
||
|
function only if you know what you are doing.
|
||
|
The receiver must use the same parameters too.
|
||
|
"""
|
||
|
|
||
|
# Set defaults for salt length and mask generation function
|
||
|
if self._saltLen is None:
|
||
|
sLen = msg_hash.digest_size
|
||
|
else:
|
||
|
sLen = self._saltLen
|
||
|
|
||
|
if self._mgfunc is None:
|
||
|
mgf = lambda x, y: MGF1(x, y, msg_hash)
|
||
|
else:
|
||
|
mgf = self._mgfunc
|
||
|
|
||
|
modBits = Crypto.Util.number.size(self._key.n)
|
||
|
|
||
|
# See 8.1.1 in RFC3447
|
||
|
k = ceil_div(modBits, 8) # k is length in bytes of the modulus
|
||
|
# Step 1
|
||
|
em = _EMSA_PSS_ENCODE(msg_hash, modBits-1, self._randfunc, mgf, sLen)
|
||
|
# Step 2a (OS2IP)
|
||
|
em_int = bytes_to_long(em)
|
||
|
# Step 2b (RSASP1)
|
||
|
m_int = self._key._decrypt(em_int)
|
||
|
# Step 2c (I2OSP)
|
||
|
signature = long_to_bytes(m_int, k)
|
||
|
return signature
|
||
|
|
||
|
def verify(self, msg_hash, signature):
|
||
|
"""Verify that a certain PKCS#1 PSS signature is authentic.
|
||
|
|
||
|
This function checks if the party holding the private half
|
||
|
of the given RSA key has really signed the message.
|
||
|
|
||
|
This function is called ``RSASSA-PSS-VERIFY``, and is specified
|
||
|
in section 8.1.2 of RFC3447.
|
||
|
|
||
|
:Parameters:
|
||
|
msg_hash : hash object
|
||
|
The cryptographic hash computed over the message.
|
||
|
This is an object belonging to the `Crypto.Hash` module.
|
||
|
signature : byte string
|
||
|
The signature that needs to be validated.
|
||
|
|
||
|
:Raise ValueError:
|
||
|
if the signature is incorrect.
|
||
|
"""
|
||
|
|
||
|
# Set defaults for salt length and mask generation function
|
||
|
if self._saltLen is None:
|
||
|
sLen = msg_hash.digest_size
|
||
|
else:
|
||
|
sLen = self._saltLen
|
||
|
if self._mgfunc:
|
||
|
mgf = self._mgfunc
|
||
|
else:
|
||
|
mgf = lambda x, y: MGF1(x, y, msg_hash)
|
||
|
|
||
|
modBits = Crypto.Util.number.size(self._key.n)
|
||
|
|
||
|
# See 8.1.2 in RFC3447
|
||
|
k = ceil_div(modBits, 8) # Convert from bits to bytes
|
||
|
# Step 1
|
||
|
if len(signature) != k:
|
||
|
raise ValueError("Incorrect signature")
|
||
|
# Step 2a (O2SIP)
|
||
|
signature_int = bytes_to_long(signature)
|
||
|
# Step 2b (RSAVP1)
|
||
|
em_int = self._key._encrypt(signature_int)
|
||
|
# Step 2c (I2OSP)
|
||
|
emLen = ceil_div(modBits - 1, 8)
|
||
|
em = long_to_bytes(em_int, emLen)
|
||
|
# Step 3/4
|
||
|
_EMSA_PSS_VERIFY(msg_hash, em, modBits-1, mgf, sLen)
|
||
|
|
||
|
|
||
|
def MGF1(mgfSeed, maskLen, hash):
|
||
|
"""Mask Generation Function, described in B.2.1"""
|
||
|
T = b("")
|
||
|
for counter in range(ceil_div(maskLen, hash.digest_size)):
|
||
|
c = long_to_bytes(counter, 4)
|
||
|
hobj = hash.new()
|
||
|
hobj.update(mgfSeed + c)
|
||
|
T = T + hobj.digest()
|
||
|
assert(len(T) >= maskLen)
|
||
|
return T[:maskLen]
|
||
|
|
||
|
|
||
|
def _EMSA_PSS_ENCODE(mhash, emBits, randFunc, mgf, sLen):
|
||
|
"""
|
||
|
Implement the ``EMSA-PSS-ENCODE`` function, as defined
|
||
|
in PKCS#1 v2.1 (RFC3447, 9.1.1).
|
||
|
|
||
|
The original ``EMSA-PSS-ENCODE`` actually accepts the message ``M``
|
||
|
as input, and hash it internally. Here, we expect that the message
|
||
|
has already been hashed instead.
|
||
|
|
||
|
:Parameters:
|
||
|
mhash : hash object
|
||
|
The hash object that holds the digest of the message being signed.
|
||
|
emBits : int
|
||
|
Maximum length of the final encoding, in bits.
|
||
|
randFunc : callable
|
||
|
An RNG function that accepts as only parameter an int, and returns
|
||
|
a string of random bytes, to be used as salt.
|
||
|
mgf : callable
|
||
|
A mask generation function that accepts two parameters: a string to
|
||
|
use as seed, and the lenth of the mask to generate, in bytes.
|
||
|
sLen : int
|
||
|
Length of the salt, in bytes.
|
||
|
|
||
|
:Return: An ``emLen`` byte long string that encodes the hash
|
||
|
(with ``emLen = \ceil(emBits/8)``).
|
||
|
|
||
|
:Raise ValueError:
|
||
|
When digest or salt length are too big.
|
||
|
"""
|
||
|
|
||
|
emLen = ceil_div(emBits, 8)
|
||
|
|
||
|
# Bitmask of digits that fill up
|
||
|
lmask = 0
|
||
|
for i in range(8*emLen-emBits):
|
||
|
lmask = lmask >> 1 | 0x80
|
||
|
|
||
|
# Step 1 and 2 have been already done
|
||
|
# Step 3
|
||
|
if emLen < mhash.digest_size+sLen+2:
|
||
|
raise ValueError("Digest or salt length are too long"
|
||
|
" for given key size.")
|
||
|
# Step 4
|
||
|
salt = randFunc(sLen)
|
||
|
# Step 5
|
||
|
m_prime = bchr(0)*8 + mhash.digest() + salt
|
||
|
# Step 6
|
||
|
h = mhash.new()
|
||
|
h.update(m_prime)
|
||
|
# Step 7
|
||
|
ps = bchr(0)*(emLen-sLen-mhash.digest_size-2)
|
||
|
# Step 8
|
||
|
db = ps + bchr(1) + salt
|
||
|
# Step 9
|
||
|
dbMask = mgf(h.digest(), emLen-mhash.digest_size-1)
|
||
|
# Step 10
|
||
|
maskedDB = strxor(db, dbMask)
|
||
|
# Step 11
|
||
|
maskedDB = bchr(bord(maskedDB[0]) & ~lmask) + maskedDB[1:]
|
||
|
# Step 12
|
||
|
em = maskedDB + h.digest() + bchr(0xBC)
|
||
|
return em
|
||
|
|
||
|
|
||
|
def _EMSA_PSS_VERIFY(mhash, em, emBits, mgf, sLen):
|
||
|
"""
|
||
|
Implement the ``EMSA-PSS-VERIFY`` function, as defined
|
||
|
in PKCS#1 v2.1 (RFC3447, 9.1.2).
|
||
|
|
||
|
``EMSA-PSS-VERIFY`` actually accepts the message ``M`` as input,
|
||
|
and hash it internally. Here, we expect that the message has already
|
||
|
been hashed instead.
|
||
|
|
||
|
:Parameters:
|
||
|
mhash : hash object
|
||
|
The hash object that holds the digest of the message to be verified.
|
||
|
em : string
|
||
|
The signature to verify, therefore proving that the sender really
|
||
|
signed the message that was received.
|
||
|
emBits : int
|
||
|
Length of the final encoding (em), in bits.
|
||
|
mgf : callable
|
||
|
A mask generation function that accepts two parameters: a string to
|
||
|
use as seed, and the lenth of the mask to generate, in bytes.
|
||
|
sLen : int
|
||
|
Length of the salt, in bytes.
|
||
|
|
||
|
:Raise ValueError:
|
||
|
When the encoding is inconsistent, or the digest or salt lengths
|
||
|
are too big.
|
||
|
"""
|
||
|
|
||
|
emLen = ceil_div(emBits, 8)
|
||
|
|
||
|
# Bitmask of digits that fill up
|
||
|
lmask = 0
|
||
|
for i in range(8*emLen-emBits):
|
||
|
lmask = lmask >> 1 | 0x80
|
||
|
|
||
|
# Step 1 and 2 have been already done
|
||
|
# Step 3
|
||
|
if emLen < mhash.digest_size+sLen+2:
|
||
|
return False
|
||
|
# Step 4
|
||
|
if ord(em[-1:]) != 0xBC:
|
||
|
raise ValueError("Incorrect signature")
|
||
|
# Step 5
|
||
|
maskedDB = em[:emLen-mhash.digest_size-1]
|
||
|
h = em[emLen-mhash.digest_size-1:-1]
|
||
|
# Step 6
|
||
|
if lmask & bord(em[0]):
|
||
|
raise ValueError("Incorrect signature")
|
||
|
# Step 7
|
||
|
dbMask = mgf(h, emLen-mhash.digest_size-1)
|
||
|
# Step 8
|
||
|
db = strxor(maskedDB, dbMask)
|
||
|
# Step 9
|
||
|
db = bchr(bord(db[0]) & ~lmask) + db[1:]
|
||
|
# Step 10
|
||
|
if not db.startswith(bchr(0)*(emLen-mhash.digest_size-sLen-2) + bchr(1)):
|
||
|
raise ValueError("Incorrect signature")
|
||
|
# Step 11
|
||
|
if sLen > 0:
|
||
|
salt = db[-sLen:]
|
||
|
else:
|
||
|
salt = b("")
|
||
|
# Step 12
|
||
|
m_prime = bchr(0)*8 + mhash.digest() + salt
|
||
|
# Step 13
|
||
|
hobj = mhash.new()
|
||
|
hobj.update(m_prime)
|
||
|
hp = hobj.digest()
|
||
|
# Step 14
|
||
|
if h != hp:
|
||
|
raise ValueError("Incorrect signature")
|
||
|
|
||
|
|
||
|
def new(rsa_key, **kwargs):
|
||
|
"""Return a signature scheme object `PSS_SigScheme` that
|
||
|
can be used to perform PKCS#1 PSS signature or verification.
|
||
|
|
||
|
:Parameters:
|
||
|
rsa_key : RSA key object
|
||
|
The key to use to sign or verify the message.
|
||
|
This is a `Crypto.PublicKey.RSA` object.
|
||
|
Signing is only possible if *key* is a private RSA key.
|
||
|
:Keywords:
|
||
|
mask_func : callable
|
||
|
A mask generation function that accepts two parameters: a string to
|
||
|
use as seed, and the length of the mask in bytes to generate.
|
||
|
If not specified, the standard MGF1 is used.
|
||
|
salt_bytes : int
|
||
|
Length of the salt, in bytes.
|
||
|
If not specified, it matches the output size of the hash function.
|
||
|
If zero, the signature scheme becomes deterministic.
|
||
|
rand_func : callable
|
||
|
A function that returns random bytes.
|
||
|
The default is `Crypto.Random.get_random_bytes`.
|
||
|
"""
|
||
|
|
||
|
mask_func = kwargs.pop("mask_func", None)
|
||
|
salt_len = kwargs.pop("salt_bytes", None)
|
||
|
rand_func = kwargs.pop("rand_func", None)
|
||
|
if rand_func is None:
|
||
|
rand_func = Random.get_random_bytes
|
||
|
if kwargs:
|
||
|
raise ValueError("Unknown keywords: " + str(list(kwargs.keys())))
|
||
|
return PSS_SigScheme(rsa_key, mask_func, salt_len, rand_func)
|