Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/Crypto/Cipher/PKCS1_OAEP.py

262 lines
9.3 KiB
Python
Raw Normal View History

# -*- coding: utf-8 -*-
#
# Cipher/PKCS1_OAEP.py : PKCS#1 OAEP
#
# ===================================================================
# The contents of this file are dedicated to the public domain. To
# the extent that dedication to the public domain is not available,
# everyone is granted a worldwide, perpetual, royalty-free,
# non-exclusive license to exercise all rights associated with the
# contents of this file for any purpose whatsoever.
# No rights are reserved.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ===================================================================
"""RSA encryption protocol according to PKCS#1 OAEP
See RFC3447__ or the `original RSA Labs specification`__ .
This scheme is more properly called ``RSAES-OAEP``.
As an example, a sender may encrypt a message in this way:
>>> from Crypto.Cipher import PKCS1_OAEP
>>> from Crypto.PublicKey import RSA
>>>
>>> message = b'To be encrypted'
>>> key = RSA.importKey(open('pubkey.der').read())
>>> cipher = PKCS1_OAEP.new(key)
>>> ciphertext = cipher.encrypt(message)
At the receiver side, decryption can be done using the private part of
the RSA key:
>>> key = RSA.importKey(open('privkey.der').read())
>>> cipher = PKCS1_OAP.new(key)
>>> message = cipher.decrypt(ciphertext)
.. __: http://www.ietf.org/rfc/rfc3447.txt
.. __: http://www.rsa.com/rsalabs/node.asp?id=2125.
"""
__all__ = [ 'new', 'PKCS1OAEP_Cipher' ]
from Crypto.Signature.pss import MGF1
import Crypto.Hash.SHA1
from Crypto.Util.py3compat import *
import Crypto.Util.number
from Crypto.Util.number import ceil_div, bytes_to_long, long_to_bytes
from Crypto.Util.strxor import strxor
from Crypto import Random
class PKCS1OAEP_Cipher:
"""This cipher can perform PKCS#1 v1.5 OAEP encryption or decryption."""
def __init__(self, key, hashAlgo, mgfunc, label, randfunc):
"""Initialize this PKCS#1 OAEP cipher object.
:Parameters:
key : an RSA key object
If a private half is given, both encryption and decryption are possible.
If a public half is given, only encryption is possible.
hashAlgo : hash object
The hash function to use. This can be a module under `Crypto.Hash`
or an existing hash object created from any of such modules. If not specified,
`Crypto.Hash.SHA1` is used.
mgfunc : callable
A mask generation function that accepts two parameters: a string to
use as seed, and the lenth of the mask to generate, in bytes.
If not specified, the standard MGF1 is used (a safe choice).
label : byte string
A label to apply to this particular encryption. If not specified,
an empty string is used. Specifying a label does not improve
security.
randfunc : callable
A function that returns random bytes.
:attention: Modify the mask generation function only if you know what you are doing.
Sender and receiver must use the same one.
"""
self._key = key
if hashAlgo:
self._hashObj = hashAlgo
else:
self._hashObj = Crypto.Hash.SHA1
if mgfunc:
self._mgf = mgfunc
else:
self._mgf = lambda x,y: MGF1(x,y,self._hashObj)
self._label = label
self._randfunc = randfunc
def can_encrypt(self):
"""Return True/1 if this cipher object can be used for encryption."""
return self._key.can_encrypt()
def can_decrypt(self):
"""Return True/1 if this cipher object can be used for decryption."""
return self._key.can_decrypt()
def encrypt(self, message):
"""Produce the PKCS#1 OAEP encryption of a message.
This function is named ``RSAES-OAEP-ENCRYPT``, and is specified in
section 7.1.1 of RFC3447.
:Parameters:
message : byte string
The message to encrypt, also known as plaintext. It can be of
variable length, but not longer than the RSA modulus (in bytes)
minus 2, minus twice the hash output size.
:Return: A byte string, the ciphertext in which the message is encrypted.
It is as long as the RSA modulus (in bytes).
:Raise ValueError:
If the RSA key length is not sufficiently long to deal with the given
message.
"""
# TODO: Verify the key is RSA
# See 7.1.1 in RFC3447
modBits = Crypto.Util.number.size(self._key.n)
k = ceil_div(modBits,8) # Convert from bits to bytes
hLen = self._hashObj.digest_size
mLen = len(message)
# Step 1b
ps_len = k-mLen-2*hLen-2
if ps_len<0:
raise ValueError("Plaintext is too long.")
# Step 2a
lHash = self._hashObj.new(self._label).digest()
# Step 2b
ps = bchr(0x00)*ps_len
# Step 2c
db = lHash + ps + bchr(0x01) + message
# Step 2d
ros = self._randfunc(hLen)
# Step 2e
dbMask = self._mgf(ros, k-hLen-1)
# Step 2f
maskedDB = strxor(db, dbMask)
# Step 2g
seedMask = self._mgf(maskedDB, hLen)
# Step 2h
maskedSeed = strxor(ros, seedMask)
# Step 2i
em = bchr(0x00) + maskedSeed + maskedDB
# Step 3a (OS2IP)
em_int = bytes_to_long(em)
# Step 3b (RSAEP)
m_int = self._key._encrypt(em_int)
# Step 3c (I2OSP)
c = long_to_bytes(m_int, k)
return c
def decrypt(self, ct):
"""Decrypt a PKCS#1 OAEP ciphertext.
This function is named ``RSAES-OAEP-DECRYPT``, and is specified in
section 7.1.2 of RFC3447.
:Parameters:
ct : byte string
The ciphertext that contains the message to recover.
:Return: A byte string, the original message.
:Raise ValueError:
If the ciphertext length is incorrect, or if the decryption does not
succeed.
:Raise TypeError:
If the RSA key has no private half.
"""
# See 7.1.2 in RFC3447
modBits = Crypto.Util.number.size(self._key.n)
k = ceil_div(modBits,8) # Convert from bits to bytes
hLen = self._hashObj.digest_size
# Step 1b and 1c
if len(ct) != k or k<hLen+2:
raise ValueError("Ciphertext with incorrect length.")
# Step 2a (O2SIP)
ct_int = bytes_to_long(ct)
# Step 2b (RSADP)
m_int = self._key._decrypt(ct_int)
# Complete step 2c (I2OSP)
em = long_to_bytes(m_int, k)
# Step 3a
lHash = self._hashObj.new(self._label).digest()
# Step 3b
y = em[0]
# y must be 0, but we MUST NOT check it here in order not to
# allow attacks like Manger's (http://dl.acm.org/citation.cfm?id=704143)
maskedSeed = em[1:hLen+1]
maskedDB = em[hLen+1:]
# Step 3c
seedMask = self._mgf(maskedDB, hLen)
# Step 3d
seed = strxor(maskedSeed, seedMask)
# Step 3e
dbMask = self._mgf(seed, k-hLen-1)
# Step 3f
db = strxor(maskedDB, dbMask)
# Step 3g
valid = 1
one = db[hLen:].find(bchr(0x01))
lHash1 = db[:hLen]
if lHash1!=lHash:
valid = 0
if one<0:
valid = 0
if bord(y)!=0:
valid = 0
if not valid:
raise ValueError("Incorrect decryption.")
# Step 4
return db[hLen+one+1:]
def new(key, hashAlgo=None, mgfunc=None, label=b(''), randfunc=None):
"""Return a cipher object `PKCS1OAEP_Cipher` that can be used to perform PKCS#1 OAEP encryption or decryption.
:Parameters:
key : RSA key object
The key to use to encrypt or decrypt the message. This is a `Crypto.PublicKey.RSA` object.
Decryption is only possible if *key* is a private RSA key.
hashAlgo : hash object
The hash function to use. This can be a module under `Crypto.Hash`
or an existing hash object created from any of such modules. If not specified,
`Crypto.Hash.SHA1` is used.
mgfunc : callable
A mask generation function that accepts two parameters: a string to
use as seed, and the lenth of the mask to generate, in bytes.
If not specified, the standard MGF1 is used (a safe choice).
label : byte string
A label to apply to this particular encryption. If not specified,
an empty string is used. Specifying a label does not improve
security.
randfunc : callable
A function that returns random bytes.
The default is `Random.get_random_bytes`.
:attention: Modify the mask generation function only if you know what you are doing.
Sender and receiver must use the same one.
"""
if randfunc is None:
randfunc = Random.get_random_bytes
return PKCS1OAEP_Cipher(key, hashAlgo, mgfunc, label, randfunc)