212 lines
7.4 KiB
Python
212 lines
7.4 KiB
Python
|
# Authors: Manoj Kumar mks542@nyu.edu
|
||
|
# License: BSD 3 clause
|
||
|
|
||
|
import numpy as np
|
||
|
from scipy import optimize, sparse
|
||
|
|
||
|
from sklearn.utils._testing import assert_almost_equal
|
||
|
from sklearn.utils._testing import assert_array_equal
|
||
|
from sklearn.utils._testing import assert_array_almost_equal
|
||
|
|
||
|
from sklearn.datasets import make_regression
|
||
|
from sklearn.linear_model import (
|
||
|
HuberRegressor, LinearRegression, SGDRegressor, Ridge)
|
||
|
from sklearn.linear_model._huber import _huber_loss_and_gradient
|
||
|
|
||
|
|
||
|
def make_regression_with_outliers(n_samples=50, n_features=20):
|
||
|
rng = np.random.RandomState(0)
|
||
|
# Generate data with outliers by replacing 10% of the samples with noise.
|
||
|
X, y = make_regression(
|
||
|
n_samples=n_samples, n_features=n_features,
|
||
|
random_state=0, noise=0.05)
|
||
|
|
||
|
# Replace 10% of the sample with noise.
|
||
|
num_noise = int(0.1 * n_samples)
|
||
|
random_samples = rng.randint(0, n_samples, num_noise)
|
||
|
X[random_samples, :] = 2.0 * rng.normal(0, 1, (num_noise, X.shape[1]))
|
||
|
return X, y
|
||
|
|
||
|
|
||
|
def test_huber_equals_lr_for_high_epsilon():
|
||
|
# Test that Ridge matches LinearRegression for large epsilon
|
||
|
X, y = make_regression_with_outliers()
|
||
|
lr = LinearRegression()
|
||
|
lr.fit(X, y)
|
||
|
huber = HuberRegressor(epsilon=1e3, alpha=0.0)
|
||
|
huber.fit(X, y)
|
||
|
assert_almost_equal(huber.coef_, lr.coef_, 3)
|
||
|
assert_almost_equal(huber.intercept_, lr.intercept_, 2)
|
||
|
|
||
|
|
||
|
def test_huber_max_iter():
|
||
|
X, y = make_regression_with_outliers()
|
||
|
huber = HuberRegressor(max_iter=1)
|
||
|
huber.fit(X, y)
|
||
|
assert huber.n_iter_ == huber.max_iter
|
||
|
|
||
|
|
||
|
def test_huber_gradient():
|
||
|
# Test that the gradient calculated by _huber_loss_and_gradient is correct
|
||
|
rng = np.random.RandomState(1)
|
||
|
X, y = make_regression_with_outliers()
|
||
|
sample_weight = rng.randint(1, 3, (y.shape[0]))
|
||
|
|
||
|
def loss_func(x, *args):
|
||
|
return _huber_loss_and_gradient(x, *args)[0]
|
||
|
|
||
|
def grad_func(x, *args):
|
||
|
return _huber_loss_and_gradient(x, *args)[1]
|
||
|
|
||
|
# Check using optimize.check_grad that the gradients are equal.
|
||
|
for _ in range(5):
|
||
|
# Check for both fit_intercept and otherwise.
|
||
|
for n_features in [X.shape[1] + 1, X.shape[1] + 2]:
|
||
|
w = rng.randn(n_features)
|
||
|
w[-1] = np.abs(w[-1])
|
||
|
grad_same = optimize.check_grad(
|
||
|
loss_func, grad_func, w, X, y, 0.01, 0.1, sample_weight)
|
||
|
assert_almost_equal(grad_same, 1e-6, 4)
|
||
|
|
||
|
|
||
|
def test_huber_sample_weights():
|
||
|
# Test sample_weights implementation in HuberRegressor"""
|
||
|
|
||
|
X, y = make_regression_with_outliers()
|
||
|
huber = HuberRegressor()
|
||
|
huber.fit(X, y)
|
||
|
huber_coef = huber.coef_
|
||
|
huber_intercept = huber.intercept_
|
||
|
|
||
|
# Rescale coefs before comparing with assert_array_almost_equal to make
|
||
|
# sure that the number of decimal places used is somewhat insensitive to
|
||
|
# the amplitude of the coefficients and therefore to the scale of the
|
||
|
# data and the regularization parameter
|
||
|
scale = max(np.mean(np.abs(huber.coef_)),
|
||
|
np.mean(np.abs(huber.intercept_)))
|
||
|
|
||
|
huber.fit(X, y, sample_weight=np.ones(y.shape[0]))
|
||
|
assert_array_almost_equal(huber.coef_ / scale, huber_coef / scale)
|
||
|
assert_array_almost_equal(huber.intercept_ / scale,
|
||
|
huber_intercept / scale)
|
||
|
|
||
|
X, y = make_regression_with_outliers(n_samples=5, n_features=20)
|
||
|
X_new = np.vstack((X, np.vstack((X[1], X[1], X[3]))))
|
||
|
y_new = np.concatenate((y, [y[1]], [y[1]], [y[3]]))
|
||
|
huber.fit(X_new, y_new)
|
||
|
huber_coef = huber.coef_
|
||
|
huber_intercept = huber.intercept_
|
||
|
sample_weight = np.ones(X.shape[0])
|
||
|
sample_weight[1] = 3
|
||
|
sample_weight[3] = 2
|
||
|
huber.fit(X, y, sample_weight=sample_weight)
|
||
|
|
||
|
assert_array_almost_equal(huber.coef_ / scale, huber_coef / scale)
|
||
|
assert_array_almost_equal(huber.intercept_ / scale,
|
||
|
huber_intercept / scale)
|
||
|
|
||
|
# Test sparse implementation with sample weights.
|
||
|
X_csr = sparse.csr_matrix(X)
|
||
|
huber_sparse = HuberRegressor()
|
||
|
huber_sparse.fit(X_csr, y, sample_weight=sample_weight)
|
||
|
assert_array_almost_equal(huber_sparse.coef_ / scale,
|
||
|
huber_coef / scale)
|
||
|
|
||
|
|
||
|
def test_huber_sparse():
|
||
|
X, y = make_regression_with_outliers()
|
||
|
huber = HuberRegressor(alpha=0.1)
|
||
|
huber.fit(X, y)
|
||
|
|
||
|
X_csr = sparse.csr_matrix(X)
|
||
|
huber_sparse = HuberRegressor(alpha=0.1)
|
||
|
huber_sparse.fit(X_csr, y)
|
||
|
assert_array_almost_equal(huber_sparse.coef_, huber.coef_)
|
||
|
assert_array_equal(huber.outliers_, huber_sparse.outliers_)
|
||
|
|
||
|
|
||
|
def test_huber_scaling_invariant():
|
||
|
# Test that outliers filtering is scaling independent.
|
||
|
X, y = make_regression_with_outliers()
|
||
|
huber = HuberRegressor(fit_intercept=False, alpha=0.0, max_iter=100)
|
||
|
huber.fit(X, y)
|
||
|
n_outliers_mask_1 = huber.outliers_
|
||
|
assert not np.all(n_outliers_mask_1)
|
||
|
|
||
|
huber.fit(X, 2. * y)
|
||
|
n_outliers_mask_2 = huber.outliers_
|
||
|
assert_array_equal(n_outliers_mask_2, n_outliers_mask_1)
|
||
|
|
||
|
huber.fit(2. * X, 2. * y)
|
||
|
n_outliers_mask_3 = huber.outliers_
|
||
|
assert_array_equal(n_outliers_mask_3, n_outliers_mask_1)
|
||
|
|
||
|
|
||
|
def test_huber_and_sgd_same_results():
|
||
|
# Test they should converge to same coefficients for same parameters
|
||
|
|
||
|
X, y = make_regression_with_outliers(n_samples=10, n_features=2)
|
||
|
|
||
|
# Fit once to find out the scale parameter. Scale down X and y by scale
|
||
|
# so that the scale parameter is optimized to 1.0
|
||
|
huber = HuberRegressor(fit_intercept=False, alpha=0.0, max_iter=100,
|
||
|
epsilon=1.35)
|
||
|
huber.fit(X, y)
|
||
|
X_scale = X / huber.scale_
|
||
|
y_scale = y / huber.scale_
|
||
|
huber.fit(X_scale, y_scale)
|
||
|
assert_almost_equal(huber.scale_, 1.0, 3)
|
||
|
|
||
|
sgdreg = SGDRegressor(
|
||
|
alpha=0.0, loss="huber", shuffle=True, random_state=0, max_iter=10000,
|
||
|
fit_intercept=False, epsilon=1.35, tol=None)
|
||
|
sgdreg.fit(X_scale, y_scale)
|
||
|
assert_array_almost_equal(huber.coef_, sgdreg.coef_, 1)
|
||
|
|
||
|
|
||
|
def test_huber_warm_start():
|
||
|
X, y = make_regression_with_outliers()
|
||
|
huber_warm = HuberRegressor(
|
||
|
alpha=1.0, max_iter=10000, warm_start=True, tol=1e-1)
|
||
|
|
||
|
huber_warm.fit(X, y)
|
||
|
huber_warm_coef = huber_warm.coef_.copy()
|
||
|
huber_warm.fit(X, y)
|
||
|
|
||
|
# SciPy performs the tol check after doing the coef updates, so
|
||
|
# these would be almost same but not equal.
|
||
|
assert_array_almost_equal(huber_warm.coef_, huber_warm_coef, 1)
|
||
|
|
||
|
assert huber_warm.n_iter_ == 0
|
||
|
|
||
|
|
||
|
def test_huber_better_r2_score():
|
||
|
# Test that huber returns a better r2 score than non-outliers"""
|
||
|
X, y = make_regression_with_outliers()
|
||
|
huber = HuberRegressor(alpha=0.01)
|
||
|
huber.fit(X, y)
|
||
|
linear_loss = np.dot(X, huber.coef_) + huber.intercept_ - y
|
||
|
mask = np.abs(linear_loss) < huber.epsilon * huber.scale_
|
||
|
huber_score = huber.score(X[mask], y[mask])
|
||
|
huber_outlier_score = huber.score(X[~mask], y[~mask])
|
||
|
|
||
|
# The Ridge regressor should be influenced by the outliers and hence
|
||
|
# give a worse score on the non-outliers as compared to the huber
|
||
|
# regressor.
|
||
|
ridge = Ridge(alpha=0.01)
|
||
|
ridge.fit(X, y)
|
||
|
ridge_score = ridge.score(X[mask], y[mask])
|
||
|
ridge_outlier_score = ridge.score(X[~mask], y[~mask])
|
||
|
assert huber_score > ridge_score
|
||
|
|
||
|
# The huber model should also fit poorly on the outliers.
|
||
|
assert ridge_outlier_score > huber_outlier_score
|
||
|
|
||
|
|
||
|
def test_huber_bool():
|
||
|
# Test that it does not crash with bool data
|
||
|
X, y = make_regression(n_samples=200, n_features=2, noise=4.0,
|
||
|
random_state=0)
|
||
|
X_bool = X > 0
|
||
|
HuberRegressor().fit(X_bool, y)
|