275 lines
9.4 KiB
Python
275 lines
9.4 KiB
Python
|
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
|
||
|
# Fabian Pedregosa <fabian.pedregosa@inria.fr>
|
||
|
#
|
||
|
# License: BSD 3 clause
|
||
|
|
||
|
from math import log
|
||
|
|
||
|
import numpy as np
|
||
|
from scipy.linalg import pinvh
|
||
|
import pytest
|
||
|
|
||
|
|
||
|
from sklearn.utils._testing import assert_array_almost_equal
|
||
|
from sklearn.utils._testing import assert_almost_equal
|
||
|
from sklearn.utils._testing import assert_array_less
|
||
|
from sklearn.utils._testing import assert_raise_message
|
||
|
from sklearn.utils import check_random_state
|
||
|
from sklearn.linear_model import BayesianRidge, ARDRegression
|
||
|
from sklearn.linear_model import Ridge
|
||
|
from sklearn import datasets
|
||
|
from sklearn.utils.extmath import fast_logdet
|
||
|
|
||
|
diabetes = datasets.load_diabetes()
|
||
|
|
||
|
|
||
|
def test_n_iter():
|
||
|
"""Check value of n_iter."""
|
||
|
X = np.array([[1], [2], [6], [8], [10]])
|
||
|
y = np.array([1, 2, 6, 8, 10])
|
||
|
clf = BayesianRidge(n_iter=0)
|
||
|
msg = "n_iter should be greater than or equal to 1."
|
||
|
assert_raise_message(ValueError, msg, clf.fit, X, y)
|
||
|
|
||
|
|
||
|
def test_bayesian_ridge_scores():
|
||
|
"""Check scores attribute shape"""
|
||
|
X, y = diabetes.data, diabetes.target
|
||
|
|
||
|
clf = BayesianRidge(compute_score=True)
|
||
|
clf.fit(X, y)
|
||
|
|
||
|
assert clf.scores_.shape == (clf.n_iter_ + 1,)
|
||
|
|
||
|
|
||
|
def test_bayesian_ridge_score_values():
|
||
|
"""Check value of score on toy example.
|
||
|
|
||
|
Compute log marginal likelihood with equation (36) in Sparse Bayesian
|
||
|
Learning and the Relevance Vector Machine (Tipping, 2001):
|
||
|
|
||
|
- 0.5 * (log |Id/alpha + X.X^T/lambda| +
|
||
|
y^T.(Id/alpha + X.X^T/lambda).y + n * log(2 * pi))
|
||
|
+ lambda_1 * log(lambda) - lambda_2 * lambda
|
||
|
+ alpha_1 * log(alpha) - alpha_2 * alpha
|
||
|
|
||
|
and check equality with the score computed during training.
|
||
|
"""
|
||
|
|
||
|
X, y = diabetes.data, diabetes.target
|
||
|
n_samples = X.shape[0]
|
||
|
# check with initial values of alpha and lambda (see code for the values)
|
||
|
eps = np.finfo(np.float64).eps
|
||
|
alpha_ = 1. / (np.var(y) + eps)
|
||
|
lambda_ = 1.
|
||
|
|
||
|
# value of the parameters of the Gamma hyperpriors
|
||
|
alpha_1 = 0.1
|
||
|
alpha_2 = 0.1
|
||
|
lambda_1 = 0.1
|
||
|
lambda_2 = 0.1
|
||
|
|
||
|
# compute score using formula of docstring
|
||
|
score = lambda_1 * log(lambda_) - lambda_2 * lambda_
|
||
|
score += alpha_1 * log(alpha_) - alpha_2 * alpha_
|
||
|
M = 1. / alpha_ * np.eye(n_samples) + 1. / lambda_ * np.dot(X, X.T)
|
||
|
M_inv = pinvh(M)
|
||
|
score += - 0.5 * (fast_logdet(M) + np.dot(y.T, np.dot(M_inv, y)) +
|
||
|
n_samples * log(2 * np.pi))
|
||
|
|
||
|
# compute score with BayesianRidge
|
||
|
clf = BayesianRidge(alpha_1=alpha_1, alpha_2=alpha_2,
|
||
|
lambda_1=lambda_1, lambda_2=lambda_2,
|
||
|
n_iter=1, fit_intercept=False, compute_score=True)
|
||
|
clf.fit(X, y)
|
||
|
|
||
|
assert_almost_equal(clf.scores_[0], score, decimal=9)
|
||
|
|
||
|
|
||
|
def test_bayesian_ridge_parameter():
|
||
|
# Test correctness of lambda_ and alpha_ parameters (GitHub issue #8224)
|
||
|
X = np.array([[1, 1], [3, 4], [5, 7], [4, 1], [2, 6], [3, 10], [3, 2]])
|
||
|
y = np.array([1, 2, 3, 2, 0, 4, 5]).T
|
||
|
|
||
|
# A Ridge regression model using an alpha value equal to the ratio of
|
||
|
# lambda_ and alpha_ from the Bayesian Ridge model must be identical
|
||
|
br_model = BayesianRidge(compute_score=True).fit(X, y)
|
||
|
rr_model = Ridge(alpha=br_model.lambda_ / br_model.alpha_).fit(X, y)
|
||
|
assert_array_almost_equal(rr_model.coef_, br_model.coef_)
|
||
|
assert_almost_equal(rr_model.intercept_, br_model.intercept_)
|
||
|
|
||
|
|
||
|
def test_bayesian_sample_weights():
|
||
|
# Test correctness of the sample_weights method
|
||
|
X = np.array([[1, 1], [3, 4], [5, 7], [4, 1], [2, 6], [3, 10], [3, 2]])
|
||
|
y = np.array([1, 2, 3, 2, 0, 4, 5]).T
|
||
|
w = np.array([4, 3, 3, 1, 1, 2, 3]).T
|
||
|
|
||
|
# A Ridge regression model using an alpha value equal to the ratio of
|
||
|
# lambda_ and alpha_ from the Bayesian Ridge model must be identical
|
||
|
br_model = BayesianRidge(compute_score=True).fit(X, y, sample_weight=w)
|
||
|
rr_model = Ridge(alpha=br_model.lambda_ / br_model.alpha_).fit(
|
||
|
X, y, sample_weight=w)
|
||
|
assert_array_almost_equal(rr_model.coef_, br_model.coef_)
|
||
|
assert_almost_equal(rr_model.intercept_, br_model.intercept_)
|
||
|
|
||
|
|
||
|
def test_toy_bayesian_ridge_object():
|
||
|
# Test BayesianRidge on toy
|
||
|
X = np.array([[1], [2], [6], [8], [10]])
|
||
|
Y = np.array([1, 2, 6, 8, 10])
|
||
|
clf = BayesianRidge(compute_score=True)
|
||
|
clf.fit(X, Y)
|
||
|
|
||
|
# Check that the model could approximately learn the identity function
|
||
|
test = [[1], [3], [4]]
|
||
|
assert_array_almost_equal(clf.predict(test), [1, 3, 4], 2)
|
||
|
|
||
|
|
||
|
def test_bayesian_initial_params():
|
||
|
# Test BayesianRidge with initial values (alpha_init, lambda_init)
|
||
|
X = np.vander(np.linspace(0, 4, 5), 4)
|
||
|
y = np.array([0., 1., 0., -1., 0.]) # y = (x^3 - 6x^2 + 8x) / 3
|
||
|
|
||
|
# In this case, starting from the default initial values will increase
|
||
|
# the bias of the fitted curve. So, lambda_init should be small.
|
||
|
reg = BayesianRidge(alpha_init=1., lambda_init=1e-3)
|
||
|
# Check the R2 score nearly equals to one.
|
||
|
r2 = reg.fit(X, y).score(X, y)
|
||
|
assert_almost_equal(r2, 1.)
|
||
|
|
||
|
|
||
|
def test_prediction_bayesian_ridge_ard_with_constant_input():
|
||
|
# Test BayesianRidge and ARDRegression predictions for edge case of
|
||
|
# constant target vectors
|
||
|
n_samples = 4
|
||
|
n_features = 5
|
||
|
random_state = check_random_state(42)
|
||
|
constant_value = random_state.rand()
|
||
|
X = random_state.random_sample((n_samples, n_features))
|
||
|
y = np.full(n_samples, constant_value,
|
||
|
dtype=np.array(constant_value).dtype)
|
||
|
expected = np.full(n_samples, constant_value,
|
||
|
dtype=np.array(constant_value).dtype)
|
||
|
|
||
|
for clf in [BayesianRidge(), ARDRegression()]:
|
||
|
y_pred = clf.fit(X, y).predict(X)
|
||
|
assert_array_almost_equal(y_pred, expected)
|
||
|
|
||
|
|
||
|
def test_std_bayesian_ridge_ard_with_constant_input():
|
||
|
# Test BayesianRidge and ARDRegression standard dev. for edge case of
|
||
|
# constant target vector
|
||
|
# The standard dev. should be relatively small (< 0.01 is tested here)
|
||
|
n_samples = 10
|
||
|
n_features = 5
|
||
|
random_state = check_random_state(42)
|
||
|
constant_value = random_state.rand()
|
||
|
X = random_state.random_sample((n_samples, n_features))
|
||
|
y = np.full(n_samples, constant_value,
|
||
|
dtype=np.array(constant_value).dtype)
|
||
|
expected_upper_boundary = 0.01
|
||
|
|
||
|
for clf in [BayesianRidge(), ARDRegression()]:
|
||
|
_, y_std = clf.fit(X, y).predict(X, return_std=True)
|
||
|
assert_array_less(y_std, expected_upper_boundary)
|
||
|
|
||
|
|
||
|
def test_update_of_sigma_in_ard():
|
||
|
# Checks that `sigma_` is updated correctly after the last iteration
|
||
|
# of the ARDRegression algorithm. See issue #10128.
|
||
|
X = np.array([[1, 0],
|
||
|
[0, 0]])
|
||
|
y = np.array([0, 0])
|
||
|
clf = ARDRegression(n_iter=1)
|
||
|
clf.fit(X, y)
|
||
|
# With the inputs above, ARDRegression prunes both of the two coefficients
|
||
|
# in the first iteration. Hence, the expected shape of `sigma_` is (0, 0).
|
||
|
assert clf.sigma_.shape == (0, 0)
|
||
|
# Ensure that no error is thrown at prediction stage
|
||
|
clf.predict(X, return_std=True)
|
||
|
|
||
|
|
||
|
def test_toy_ard_object():
|
||
|
# Test BayesianRegression ARD classifier
|
||
|
X = np.array([[1], [2], [3]])
|
||
|
Y = np.array([1, 2, 3])
|
||
|
clf = ARDRegression(compute_score=True)
|
||
|
clf.fit(X, Y)
|
||
|
|
||
|
# Check that the model could approximately learn the identity function
|
||
|
test = [[1], [3], [4]]
|
||
|
assert_array_almost_equal(clf.predict(test), [1, 3, 4], 2)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('seed', range(100))
|
||
|
@pytest.mark.parametrize('n_samples, n_features', ((10, 100), (100, 10)))
|
||
|
def test_ard_accuracy_on_easy_problem(seed, n_samples, n_features):
|
||
|
# Check that ARD converges with reasonable accuracy on an easy problem
|
||
|
# (Github issue #14055)
|
||
|
X = np.random.RandomState(seed=seed).normal(size=(250, 3))
|
||
|
y = X[:, 1]
|
||
|
|
||
|
regressor = ARDRegression()
|
||
|
regressor.fit(X, y)
|
||
|
|
||
|
abs_coef_error = np.abs(1 - regressor.coef_[1])
|
||
|
assert abs_coef_error < 1e-10
|
||
|
|
||
|
|
||
|
def test_return_std():
|
||
|
# Test return_std option for both Bayesian regressors
|
||
|
def f(X):
|
||
|
return np.dot(X, w) + b
|
||
|
|
||
|
def f_noise(X, noise_mult):
|
||
|
return f(X) + np.random.randn(X.shape[0]) * noise_mult
|
||
|
|
||
|
d = 5
|
||
|
n_train = 50
|
||
|
n_test = 10
|
||
|
|
||
|
w = np.array([1.0, 0.0, 1.0, -1.0, 0.0])
|
||
|
b = 1.0
|
||
|
|
||
|
X = np.random.random((n_train, d))
|
||
|
X_test = np.random.random((n_test, d))
|
||
|
|
||
|
for decimal, noise_mult in enumerate([1, 0.1, 0.01]):
|
||
|
y = f_noise(X, noise_mult)
|
||
|
|
||
|
m1 = BayesianRidge()
|
||
|
m1.fit(X, y)
|
||
|
y_mean1, y_std1 = m1.predict(X_test, return_std=True)
|
||
|
assert_array_almost_equal(y_std1, noise_mult, decimal=decimal)
|
||
|
|
||
|
m2 = ARDRegression()
|
||
|
m2.fit(X, y)
|
||
|
y_mean2, y_std2 = m2.predict(X_test, return_std=True)
|
||
|
assert_array_almost_equal(y_std2, noise_mult, decimal=decimal)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('seed', range(10))
|
||
|
def test_update_sigma(seed):
|
||
|
# make sure the two update_sigma() helpers are equivalent. The woodbury
|
||
|
# formula is used when n_samples < n_features, and the other one is used
|
||
|
# otherwise.
|
||
|
|
||
|
rng = np.random.RandomState(seed)
|
||
|
|
||
|
# set n_samples == n_features to avoid instability issues when inverting
|
||
|
# the matrices. Using the woodbury formula would be unstable when
|
||
|
# n_samples > n_features
|
||
|
n_samples = n_features = 10
|
||
|
X = rng.randn(n_samples, n_features)
|
||
|
alpha = 1
|
||
|
lmbda = np.arange(1, n_features + 1)
|
||
|
keep_lambda = np.array([True] * n_features)
|
||
|
|
||
|
reg = ARDRegression()
|
||
|
|
||
|
sigma = reg._update_sigma(X, alpha, lmbda, keep_lambda)
|
||
|
sigma_woodbury = reg._update_sigma_woodbury(X, alpha, lmbda, keep_lambda)
|
||
|
|
||
|
np.testing.assert_allclose(sigma, sigma_woodbury)
|