Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/skimage/io/tests/test_simpleitk.py

88 lines
2.5 KiB
Python
Raw Normal View History

import os.path
import numpy as np
import unittest
from tempfile import NamedTemporaryFile
from skimage import data
from skimage.io import imread, imsave, use_plugin, reset_plugins
from skimage._shared import testing
from pytest import importorskip
importorskip('SimpleITK')
np.random.seed(0)
def teardown():
reset_plugins()
def setup_module(self):
"""The effect of the `plugin.use` call may be overridden by later imports.
Call `use_plugin` directly before the tests to ensure that SimpleITK is
used.
"""
use_plugin('simpleitk')
def test_imread_as_gray():
img = imread(testing.fetch('data/color.png'), as_gray=True)
assert img.ndim == 2
assert img.dtype == np.float64
img = imread(testing.fetch('data/camera.png'), as_gray=True)
# check that conversion does not happen for a gray image
assert np.sctype2char(img.dtype) in np.typecodes['AllInteger']
def test_bilevel():
expected = np.zeros((10, 10))
expected[::2] = 255
img = imread(testing.fetch('data/checker_bilevel.png'))
np.testing.assert_array_equal(img, expected)
"""
#TODO: This test causes a Segmentation fault
def test_imread_truncated_jpg():
assert_raises((RuntimeError, ValueError),
imread,
testing.fetch('data/truncated.jpg'))
"""
def test_imread_uint16():
expected = np.load(testing.fetch('data/chessboard_GRAY_U8.npy'))
img = imread(testing.fetch('data/chessboard_GRAY_U16.tif'))
assert np.issubdtype(img.dtype, np.uint16)
np.testing.assert_array_almost_equal(img, expected)
def test_imread_uint16_big_endian():
expected = np.load(testing.fetch('data/chessboard_GRAY_U8.npy'))
img = imread(testing.fetch('data/chessboard_GRAY_U16B.tif'))
np.testing.assert_array_almost_equal(img, expected)
class TestSave(unittest.TestCase):
def roundtrip(self, dtype, x):
f = NamedTemporaryFile(suffix='.mha')
fname = f.name
f.close()
imsave(fname, x)
y = imread(fname)
np.testing.assert_array_almost_equal(x, y)
def test_imsave_roundtrip(self):
for shape in [(10, 10), (10, 10, 3), (10, 10, 4)]:
for dtype in (np.uint8, np.uint16, np.float32, np.float64):
x = np.ones(shape, dtype=dtype) * np.random.rand(*shape)
if np.issubdtype(dtype, np.floating):
yield self.roundtrip, dtype, x
else:
x = (x * 255).astype(dtype)
yield self.roundtrip, dtype, x