369 lines
11 KiB
Python
369 lines
11 KiB
Python
|
"""
|
||
|
Min-heaps.
|
||
|
"""
|
||
|
|
||
|
from heapq import heappop, heappush
|
||
|
from itertools import count
|
||
|
import networkx as nx
|
||
|
|
||
|
__all__ = ["MinHeap", "PairingHeap", "BinaryHeap"]
|
||
|
|
||
|
|
||
|
class MinHeap:
|
||
|
"""Base class for min-heaps.
|
||
|
|
||
|
A MinHeap stores a collection of key-value pairs ordered by their values.
|
||
|
It supports querying the minimum pair, inserting a new pair, decreasing the
|
||
|
value in an existing pair and deleting the minimum pair.
|
||
|
"""
|
||
|
|
||
|
class _Item:
|
||
|
"""Used by subclassess to represent a key-value pair.
|
||
|
"""
|
||
|
|
||
|
__slots__ = ("key", "value")
|
||
|
|
||
|
def __init__(self, key, value):
|
||
|
self.key = key
|
||
|
self.value = value
|
||
|
|
||
|
def __repr__(self):
|
||
|
return repr((self.key, self.value))
|
||
|
|
||
|
def __init__(self):
|
||
|
"""Initialize a new min-heap.
|
||
|
"""
|
||
|
self._dict = {}
|
||
|
|
||
|
def min(self):
|
||
|
"""Query the minimum key-value pair.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
key, value : tuple
|
||
|
The key-value pair with the minimum value in the heap.
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
NetworkXError
|
||
|
If the heap is empty.
|
||
|
"""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def pop(self):
|
||
|
"""Delete the minimum pair in the heap.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
key, value : tuple
|
||
|
The key-value pair with the minimum value in the heap.
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
NetworkXError
|
||
|
If the heap is empty.
|
||
|
"""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def get(self, key, default=None):
|
||
|
"""Returns the value associated with a key.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
key : hashable object
|
||
|
The key to be looked up.
|
||
|
|
||
|
default : object
|
||
|
Default value to return if the key is not present in the heap.
|
||
|
Default value: None.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
value : object.
|
||
|
The value associated with the key.
|
||
|
"""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def insert(self, key, value, allow_increase=False):
|
||
|
"""Insert a new key-value pair or modify the value in an existing
|
||
|
pair.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
key : hashable object
|
||
|
The key.
|
||
|
|
||
|
value : object comparable with existing values.
|
||
|
The value.
|
||
|
|
||
|
allow_increase : bool
|
||
|
Whether the value is allowed to increase. If False, attempts to
|
||
|
increase an existing value have no effect. Default value: False.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
decreased : bool
|
||
|
True if a pair is inserted or the existing value is decreased.
|
||
|
"""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def __nonzero__(self):
|
||
|
"""Returns whether the heap if empty.
|
||
|
"""
|
||
|
return bool(self._dict)
|
||
|
|
||
|
def __bool__(self):
|
||
|
"""Returns whether the heap if empty.
|
||
|
"""
|
||
|
return bool(self._dict)
|
||
|
|
||
|
def __len__(self):
|
||
|
"""Returns the number of key-value pairs in the heap.
|
||
|
"""
|
||
|
return len(self._dict)
|
||
|
|
||
|
def __contains__(self, key):
|
||
|
"""Returns whether a key exists in the heap.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
key : any hashable object.
|
||
|
The key to be looked up.
|
||
|
"""
|
||
|
return key in self._dict
|
||
|
|
||
|
|
||
|
def _inherit_doc(cls):
|
||
|
"""Decorator for inheriting docstrings from base classes.
|
||
|
"""
|
||
|
|
||
|
def func(fn):
|
||
|
fn.__doc__ = cls.__dict__[fn.__name__].__doc__
|
||
|
return fn
|
||
|
|
||
|
return func
|
||
|
|
||
|
|
||
|
class PairingHeap(MinHeap):
|
||
|
"""A pairing heap.
|
||
|
"""
|
||
|
|
||
|
class _Node(MinHeap._Item):
|
||
|
"""A node in a pairing heap.
|
||
|
|
||
|
A tree in a pairing heap is stored using the left-child, right-sibling
|
||
|
representation.
|
||
|
"""
|
||
|
|
||
|
__slots__ = ("left", "next", "prev", "parent")
|
||
|
|
||
|
def __init__(self, key, value):
|
||
|
super(PairingHeap._Node, self).__init__(key, value)
|
||
|
# The leftmost child.
|
||
|
self.left = None
|
||
|
# The next sibling.
|
||
|
self.next = None
|
||
|
# The previous sibling.
|
||
|
self.prev = None
|
||
|
# The parent.
|
||
|
self.parent = None
|
||
|
|
||
|
def __init__(self):
|
||
|
"""Initialize a pairing heap.
|
||
|
"""
|
||
|
super().__init__()
|
||
|
self._root = None
|
||
|
|
||
|
@_inherit_doc(MinHeap)
|
||
|
def min(self):
|
||
|
if self._root is None:
|
||
|
raise nx.NetworkXError("heap is empty.")
|
||
|
return (self._root.key, self._root.value)
|
||
|
|
||
|
@_inherit_doc(MinHeap)
|
||
|
def pop(self):
|
||
|
if self._root is None:
|
||
|
raise nx.NetworkXError("heap is empty.")
|
||
|
min_node = self._root
|
||
|
self._root = self._merge_children(self._root)
|
||
|
del self._dict[min_node.key]
|
||
|
return (min_node.key, min_node.value)
|
||
|
|
||
|
@_inherit_doc(MinHeap)
|
||
|
def get(self, key, default=None):
|
||
|
node = self._dict.get(key)
|
||
|
return node.value if node is not None else default
|
||
|
|
||
|
@_inherit_doc(MinHeap)
|
||
|
def insert(self, key, value, allow_increase=False):
|
||
|
node = self._dict.get(key)
|
||
|
root = self._root
|
||
|
if node is not None:
|
||
|
if value < node.value:
|
||
|
node.value = value
|
||
|
if node is not root and value < node.parent.value:
|
||
|
self._cut(node)
|
||
|
self._root = self._link(root, node)
|
||
|
return True
|
||
|
elif allow_increase and value > node.value:
|
||
|
node.value = value
|
||
|
child = self._merge_children(node)
|
||
|
# Nonstandard step: Link the merged subtree with the root. See
|
||
|
# below for the standard step.
|
||
|
if child is not None:
|
||
|
self._root = self._link(self._root, child)
|
||
|
# Standard step: Perform a decrease followed by a pop as if the
|
||
|
# value were the smallest in the heap. Then insert the new
|
||
|
# value into the heap.
|
||
|
# if node is not root:
|
||
|
# self._cut(node)
|
||
|
# if child is not None:
|
||
|
# root = self._link(root, child)
|
||
|
# self._root = self._link(root, node)
|
||
|
# else:
|
||
|
# self._root = (self._link(node, child)
|
||
|
# if child is not None else node)
|
||
|
return False
|
||
|
else:
|
||
|
# Insert a new key.
|
||
|
node = self._Node(key, value)
|
||
|
self._dict[key] = node
|
||
|
self._root = self._link(root, node) if root is not None else node
|
||
|
return True
|
||
|
|
||
|
def _link(self, root, other):
|
||
|
"""Link two nodes, making the one with the smaller value the parent of
|
||
|
the other.
|
||
|
"""
|
||
|
if other.value < root.value:
|
||
|
root, other = other, root
|
||
|
next = root.left
|
||
|
other.next = next
|
||
|
if next is not None:
|
||
|
next.prev = other
|
||
|
other.prev = None
|
||
|
root.left = other
|
||
|
other.parent = root
|
||
|
return root
|
||
|
|
||
|
def _merge_children(self, root):
|
||
|
"""Merge the subtrees of the root using the standard two-pass method.
|
||
|
The resulting subtree is detached from the root.
|
||
|
"""
|
||
|
node = root.left
|
||
|
root.left = None
|
||
|
if node is not None:
|
||
|
link = self._link
|
||
|
# Pass 1: Merge pairs of consecutive subtrees from left to right.
|
||
|
# At the end of the pass, only the prev pointers of the resulting
|
||
|
# subtrees have meaningful values. The other pointers will be fixed
|
||
|
# in pass 2.
|
||
|
prev = None
|
||
|
while True:
|
||
|
next = node.next
|
||
|
if next is None:
|
||
|
node.prev = prev
|
||
|
break
|
||
|
next_next = next.next
|
||
|
node = link(node, next)
|
||
|
node.prev = prev
|
||
|
prev = node
|
||
|
if next_next is None:
|
||
|
break
|
||
|
node = next_next
|
||
|
# Pass 2: Successively merge the subtrees produced by pass 1 from
|
||
|
# right to left with the rightmost one.
|
||
|
prev = node.prev
|
||
|
while prev is not None:
|
||
|
prev_prev = prev.prev
|
||
|
node = link(prev, node)
|
||
|
prev = prev_prev
|
||
|
# Now node can become the new root. Its has no parent nor siblings.
|
||
|
node.prev = None
|
||
|
node.next = None
|
||
|
node.parent = None
|
||
|
return node
|
||
|
|
||
|
def _cut(self, node):
|
||
|
"""Cut a node from its parent.
|
||
|
"""
|
||
|
prev = node.prev
|
||
|
next = node.next
|
||
|
if prev is not None:
|
||
|
prev.next = next
|
||
|
else:
|
||
|
node.parent.left = next
|
||
|
node.prev = None
|
||
|
if next is not None:
|
||
|
next.prev = prev
|
||
|
node.next = None
|
||
|
node.parent = None
|
||
|
|
||
|
|
||
|
class BinaryHeap(MinHeap):
|
||
|
"""A binary heap.
|
||
|
"""
|
||
|
|
||
|
def __init__(self):
|
||
|
"""Initialize a binary heap.
|
||
|
"""
|
||
|
super().__init__()
|
||
|
self._heap = []
|
||
|
self._count = count()
|
||
|
|
||
|
@_inherit_doc(MinHeap)
|
||
|
def min(self):
|
||
|
dict = self._dict
|
||
|
if not dict:
|
||
|
raise nx.NetworkXError("heap is empty")
|
||
|
heap = self._heap
|
||
|
pop = heappop
|
||
|
# Repeatedly remove stale key-value pairs until a up-to-date one is
|
||
|
# met.
|
||
|
while True:
|
||
|
value, _, key = heap[0]
|
||
|
if key in dict and value == dict[key]:
|
||
|
break
|
||
|
pop(heap)
|
||
|
return (key, value)
|
||
|
|
||
|
@_inherit_doc(MinHeap)
|
||
|
def pop(self):
|
||
|
dict = self._dict
|
||
|
if not dict:
|
||
|
raise nx.NetworkXError("heap is empty")
|
||
|
heap = self._heap
|
||
|
pop = heappop
|
||
|
# Repeatedly remove stale key-value pairs until a up-to-date one is
|
||
|
# met.
|
||
|
while True:
|
||
|
value, _, key = heap[0]
|
||
|
pop(heap)
|
||
|
if key in dict and value == dict[key]:
|
||
|
break
|
||
|
del dict[key]
|
||
|
return (key, value)
|
||
|
|
||
|
@_inherit_doc(MinHeap)
|
||
|
def get(self, key, default=None):
|
||
|
return self._dict.get(key, default)
|
||
|
|
||
|
@_inherit_doc(MinHeap)
|
||
|
def insert(self, key, value, allow_increase=False):
|
||
|
dict = self._dict
|
||
|
if key in dict:
|
||
|
old_value = dict[key]
|
||
|
if value < old_value or (allow_increase and value > old_value):
|
||
|
# Since there is no way to efficiently obtain the location of a
|
||
|
# key-value pair in the heap, insert a new pair even if ones
|
||
|
# with the same key may already be present. Deem the old ones
|
||
|
# as stale and skip them when the minimum pair is queried.
|
||
|
dict[key] = value
|
||
|
heappush(self._heap, (value, next(self._count), key))
|
||
|
return value < old_value
|
||
|
return False
|
||
|
else:
|
||
|
dict[key] = value
|
||
|
heappush(self._heap, (value, next(self._count), key))
|
||
|
return True
|