50 lines
1.6 KiB
Python
50 lines
1.6 KiB
Python
|
import numpy as np
|
||
|
from skimage.segmentation import quickshift
|
||
|
|
||
|
from skimage._shared.testing import (assert_greater, test_parallel,
|
||
|
assert_equal, assert_array_equal)
|
||
|
|
||
|
|
||
|
@test_parallel()
|
||
|
def test_grey():
|
||
|
rnd = np.random.RandomState(0)
|
||
|
img = np.zeros((20, 21))
|
||
|
img[:10, 10:] = 0.2
|
||
|
img[10:, :10] = 0.4
|
||
|
img[10:, 10:] = 0.6
|
||
|
img += 0.1 * rnd.normal(size=img.shape)
|
||
|
seg = quickshift(img, kernel_size=2, max_dist=3, random_seed=0,
|
||
|
convert2lab=False, sigma=0)
|
||
|
# we expect 4 segments:
|
||
|
assert_equal(len(np.unique(seg)), 4)
|
||
|
# that mostly respect the 4 regions:
|
||
|
for i in range(4):
|
||
|
hist = np.histogram(img[seg == i], bins=[0, 0.1, 0.3, 0.5, 1])[0]
|
||
|
assert_greater(hist[i], 20)
|
||
|
|
||
|
|
||
|
def test_color():
|
||
|
rnd = np.random.RandomState(0)
|
||
|
img = np.zeros((20, 21, 3))
|
||
|
img[:10, :10, 0] = 1
|
||
|
img[10:, :10, 1] = 1
|
||
|
img[10:, 10:, 2] = 1
|
||
|
img += 0.01 * rnd.normal(size=img.shape)
|
||
|
img[img > 1] = 1
|
||
|
img[img < 0] = 0
|
||
|
seg = quickshift(img, random_seed=0, max_dist=30, kernel_size=10, sigma=0)
|
||
|
# we expect 4 segments:
|
||
|
assert_equal(len(np.unique(seg)), 4)
|
||
|
assert_array_equal(seg[:10, :10], 1)
|
||
|
assert_array_equal(seg[10:, :10], 2)
|
||
|
assert_array_equal(seg[:10, 10:], 0)
|
||
|
assert_array_equal(seg[10:, 10:], 3)
|
||
|
|
||
|
seg2 = quickshift(img, kernel_size=1, max_dist=2, random_seed=0,
|
||
|
convert2lab=False, sigma=0)
|
||
|
# very oversegmented:
|
||
|
assert_equal(len(np.unique(seg2)), 7)
|
||
|
# still don't cross lines
|
||
|
assert (seg2[9, :] != seg2[10, :]).all()
|
||
|
assert (seg2[:, 9] != seg2[:, 10]).all()
|