58 lines
2.1 KiB
Python
58 lines
2.1 KiB
Python
|
import numpy as np
|
||
|
|
||
|
|
||
|
def binary_blobs(length=512, blob_size_fraction=0.1, n_dim=2,
|
||
|
volume_fraction=0.5, seed=None):
|
||
|
"""
|
||
|
Generate synthetic binary image with several rounded blob-like objects.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
length : int, optional
|
||
|
Linear size of output image.
|
||
|
blob_size_fraction : float, optional
|
||
|
Typical linear size of blob, as a fraction of ``length``, should be
|
||
|
smaller than 1.
|
||
|
n_dim : int, optional
|
||
|
Number of dimensions of output image.
|
||
|
volume_fraction : float, default 0.5
|
||
|
Fraction of image pixels covered by the blobs (where the output is 1).
|
||
|
Should be in [0, 1].
|
||
|
seed : int, optional
|
||
|
Seed to initialize the random number generator.
|
||
|
If `None`, a random seed from the operating system is used.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
blobs : ndarray of bools
|
||
|
Output binary image
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from skimage import data
|
||
|
>>> data.binary_blobs(length=5, blob_size_fraction=0.2, seed=1)
|
||
|
array([[ True, False, True, True, True],
|
||
|
[ True, True, True, False, True],
|
||
|
[False, True, False, True, True],
|
||
|
[ True, False, False, True, True],
|
||
|
[ True, False, False, False, True]])
|
||
|
>>> blobs = data.binary_blobs(length=256, blob_size_fraction=0.1)
|
||
|
>>> # Finer structures
|
||
|
>>> blobs = data.binary_blobs(length=256, blob_size_fraction=0.05)
|
||
|
>>> # Blobs cover a smaller volume fraction of the image
|
||
|
>>> blobs = data.binary_blobs(length=256, volume_fraction=0.3)
|
||
|
"""
|
||
|
# filters is quite an expensive import since it imports all of scipy.signal
|
||
|
# We lazy import here
|
||
|
from ..filters import gaussian
|
||
|
|
||
|
rs = np.random.RandomState(seed)
|
||
|
shape = tuple([length] * n_dim)
|
||
|
mask = np.zeros(shape)
|
||
|
n_pts = max(int(1. / blob_size_fraction) ** n_dim, 1)
|
||
|
points = (length * rs.rand(n_dim, n_pts)).astype(np.int)
|
||
|
mask[tuple(indices for indices in points)] = 1
|
||
|
mask = gaussian(mask, sigma=0.25 * length * blob_size_fraction)
|
||
|
threshold = np.percentile(mask, 100 * (1 - volume_fraction))
|
||
|
return np.logical_not(mask < threshold)
|