126 lines
3.7 KiB
Python
126 lines
3.7 KiB
Python
|
from collections import deque
|
||
|
from functools import wraps
|
||
|
from typing import Any, Callable, Deque, Dict, Generic, Hashable, Tuple, TypeVar, cast
|
||
|
|
||
|
__all__ = [
|
||
|
"SimpleCache",
|
||
|
"FastDictCache",
|
||
|
"memoized",
|
||
|
]
|
||
|
|
||
|
_T = TypeVar("_T", bound=Hashable)
|
||
|
_U = TypeVar("_U")
|
||
|
|
||
|
|
||
|
class SimpleCache(Generic[_T, _U]):
|
||
|
"""
|
||
|
Very simple cache that discards the oldest item when the cache size is
|
||
|
exceeded.
|
||
|
|
||
|
:param maxsize: Maximum size of the cache. (Don't make it too big.)
|
||
|
"""
|
||
|
|
||
|
def __init__(self, maxsize: int = 8) -> None:
|
||
|
assert maxsize > 0
|
||
|
|
||
|
self._data: Dict[_T, _U] = {}
|
||
|
self._keys: Deque[_T] = deque()
|
||
|
self.maxsize: int = maxsize
|
||
|
|
||
|
def get(self, key: _T, getter_func: Callable[[], _U]) -> _U:
|
||
|
"""
|
||
|
Get object from the cache.
|
||
|
If not found, call `getter_func` to resolve it, and put that on the top
|
||
|
of the cache instead.
|
||
|
"""
|
||
|
# Look in cache first.
|
||
|
try:
|
||
|
return self._data[key]
|
||
|
except KeyError:
|
||
|
# Not found? Get it.
|
||
|
value = getter_func()
|
||
|
self._data[key] = value
|
||
|
self._keys.append(key)
|
||
|
|
||
|
# Remove the oldest key when the size is exceeded.
|
||
|
if len(self._data) > self.maxsize:
|
||
|
key_to_remove = self._keys.popleft()
|
||
|
if key_to_remove in self._data:
|
||
|
del self._data[key_to_remove]
|
||
|
|
||
|
return value
|
||
|
|
||
|
def clear(self) -> None:
|
||
|
" Clear cache. "
|
||
|
self._data = {}
|
||
|
self._keys = deque()
|
||
|
|
||
|
|
||
|
_K = TypeVar("_K", bound=Tuple)
|
||
|
_V = TypeVar("_V")
|
||
|
|
||
|
|
||
|
class FastDictCache(Dict[_K, _V]):
|
||
|
"""
|
||
|
Fast, lightweight cache which keeps at most `size` items.
|
||
|
It will discard the oldest items in the cache first.
|
||
|
|
||
|
The cache is a dictionary, which doesn't keep track of access counts.
|
||
|
It is perfect to cache little immutable objects which are not expensive to
|
||
|
create, but where a dictionary lookup is still much faster than an object
|
||
|
instantiation.
|
||
|
|
||
|
:param get_value: Callable that's called in case of a missing key.
|
||
|
"""
|
||
|
|
||
|
# NOTE: This cache is used to cache `prompt_toolkit.layout.screen.Char` and
|
||
|
# `prompt_toolkit.Document`. Make sure to keep this really lightweight.
|
||
|
# Accessing the cache should stay faster than instantiating new
|
||
|
# objects.
|
||
|
# (Dictionary lookups are really fast.)
|
||
|
# SimpleCache is still required for cases where the cache key is not
|
||
|
# the same as the arguments given to the function that creates the
|
||
|
# value.)
|
||
|
def __init__(self, get_value: Callable[..., _V], size: int = 1000000) -> None:
|
||
|
assert size > 0
|
||
|
|
||
|
self._keys: Deque[_K] = deque()
|
||
|
self.get_value = get_value
|
||
|
self.size = size
|
||
|
|
||
|
def __missing__(self, key: _K) -> _V:
|
||
|
# Remove the oldest key when the size is exceeded.
|
||
|
if len(self) > self.size:
|
||
|
key_to_remove = self._keys.popleft()
|
||
|
if key_to_remove in self:
|
||
|
del self[key_to_remove]
|
||
|
|
||
|
result = self.get_value(*key)
|
||
|
self[key] = result
|
||
|
self._keys.append(key)
|
||
|
return result
|
||
|
|
||
|
|
||
|
_F = TypeVar("_F", bound=Callable)
|
||
|
|
||
|
|
||
|
def memoized(maxsize: int = 1024) -> Callable[[_F], _F]:
|
||
|
"""
|
||
|
Memoization decorator for immutable classes and pure functions.
|
||
|
"""
|
||
|
|
||
|
def decorator(obj: _F) -> _F:
|
||
|
cache: SimpleCache[Hashable, Any] = SimpleCache(maxsize=maxsize)
|
||
|
|
||
|
@wraps(obj)
|
||
|
def new_callable(*a: Any, **kw: Any) -> Any:
|
||
|
def create_new() -> Any:
|
||
|
return obj(*a, **kw)
|
||
|
|
||
|
key = (a, tuple(sorted(kw.items())))
|
||
|
return cache.get(key, create_new)
|
||
|
|
||
|
return cast(_F, new_callable)
|
||
|
|
||
|
return decorator
|