305 lines
11 KiB
Python
305 lines
11 KiB
Python
|
import numpy as np
|
||
|
|
||
|
from matplotlib import cbook, ticker as mticker
|
||
|
from matplotlib.transforms import Bbox, Transform
|
||
|
from .clip_path import clip_line_to_rect
|
||
|
|
||
|
|
||
|
def _deprecate_factor_none(factor):
|
||
|
# After the deprecation period, calls to _deprecate_factor_none can just be
|
||
|
# removed.
|
||
|
if factor is None:
|
||
|
cbook.warn_deprecated(
|
||
|
"3.2", message="factor=None is deprecated since %(since)s and "
|
||
|
"support will be removed %(removal)s; use/return factor=1 instead")
|
||
|
factor = 1
|
||
|
return factor
|
||
|
|
||
|
|
||
|
class ExtremeFinderSimple:
|
||
|
"""
|
||
|
A helper class to figure out the range of grid lines that need to be drawn.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, nx, ny):
|
||
|
"""
|
||
|
Parameters
|
||
|
----------
|
||
|
nx, ny : int
|
||
|
The number of samples in each direction.
|
||
|
"""
|
||
|
self.nx = nx
|
||
|
self.ny = ny
|
||
|
|
||
|
def __call__(self, transform_xy, x1, y1, x2, y2):
|
||
|
"""
|
||
|
Compute an approximation of the bounding box obtained by applying
|
||
|
*transform_xy* to the box delimited by ``(x1, y1, x2, y2)``.
|
||
|
|
||
|
The intended use is to have ``(x1, y1, x2, y2)`` in axes coordinates,
|
||
|
and have *transform_xy* be the transform from axes coordinates to data
|
||
|
coordinates; this method then returns the range of data coordinates
|
||
|
that span the actual axes.
|
||
|
|
||
|
The computation is done by sampling ``nx * ny`` equispaced points in
|
||
|
the ``(x1, y1, x2, y2)`` box and finding the resulting points with
|
||
|
extremal coordinates; then adding some padding to take into account the
|
||
|
finite sampling.
|
||
|
|
||
|
As each sampling step covers a relative range of *1/nx* or *1/ny*,
|
||
|
the padding is computed by expanding the span covered by the extremal
|
||
|
coordinates by these fractions.
|
||
|
"""
|
||
|
x, y = np.meshgrid(
|
||
|
np.linspace(x1, x2, self.nx), np.linspace(y1, y2, self.ny))
|
||
|
xt, yt = transform_xy(np.ravel(x), np.ravel(y))
|
||
|
return self._add_pad(xt.min(), xt.max(), yt.min(), yt.max())
|
||
|
|
||
|
def _add_pad(self, x_min, x_max, y_min, y_max):
|
||
|
"""Perform the padding mentioned in `__call__`."""
|
||
|
dx = (x_max - x_min) / self.nx
|
||
|
dy = (y_max - y_min) / self.ny
|
||
|
return x_min - dx, x_max + dx, y_min - dy, y_max + dy
|
||
|
|
||
|
|
||
|
class GridFinder:
|
||
|
def __init__(self,
|
||
|
transform,
|
||
|
extreme_finder=None,
|
||
|
grid_locator1=None,
|
||
|
grid_locator2=None,
|
||
|
tick_formatter1=None,
|
||
|
tick_formatter2=None):
|
||
|
"""
|
||
|
transform : transform from the image coordinate (which will be
|
||
|
the transData of the axes to the world coordinate.
|
||
|
|
||
|
or transform = (transform_xy, inv_transform_xy)
|
||
|
|
||
|
locator1, locator2 : grid locator for 1st and 2nd axis.
|
||
|
"""
|
||
|
if extreme_finder is None:
|
||
|
extreme_finder = ExtremeFinderSimple(20, 20)
|
||
|
if grid_locator1 is None:
|
||
|
grid_locator1 = MaxNLocator()
|
||
|
if grid_locator2 is None:
|
||
|
grid_locator2 = MaxNLocator()
|
||
|
if tick_formatter1 is None:
|
||
|
tick_formatter1 = FormatterPrettyPrint()
|
||
|
if tick_formatter2 is None:
|
||
|
tick_formatter2 = FormatterPrettyPrint()
|
||
|
self.extreme_finder = extreme_finder
|
||
|
self.grid_locator1 = grid_locator1
|
||
|
self.grid_locator2 = grid_locator2
|
||
|
self.tick_formatter1 = tick_formatter1
|
||
|
self.tick_formatter2 = tick_formatter2
|
||
|
self.update_transform(transform)
|
||
|
|
||
|
def get_grid_info(self, x1, y1, x2, y2):
|
||
|
"""
|
||
|
lon_values, lat_values : list of grid values. if integer is given,
|
||
|
rough number of grids in each direction.
|
||
|
"""
|
||
|
|
||
|
extremes = self.extreme_finder(self.inv_transform_xy, x1, y1, x2, y2)
|
||
|
|
||
|
# min & max rage of lat (or lon) for each grid line will be drawn.
|
||
|
# i.e., gridline of lon=0 will be drawn from lat_min to lat_max.
|
||
|
|
||
|
lon_min, lon_max, lat_min, lat_max = extremes
|
||
|
lon_levs, lon_n, lon_factor = self.grid_locator1(lon_min, lon_max)
|
||
|
lat_levs, lat_n, lat_factor = self.grid_locator2(lat_min, lat_max)
|
||
|
|
||
|
lon_values = lon_levs[:lon_n] / _deprecate_factor_none(lon_factor)
|
||
|
lat_values = lat_levs[:lat_n] / _deprecate_factor_none(lat_factor)
|
||
|
|
||
|
lon_lines, lat_lines = self._get_raw_grid_lines(lon_values,
|
||
|
lat_values,
|
||
|
lon_min, lon_max,
|
||
|
lat_min, lat_max)
|
||
|
|
||
|
ddx = (x2-x1)*1.e-10
|
||
|
ddy = (y2-y1)*1.e-10
|
||
|
bb = Bbox.from_extents(x1-ddx, y1-ddy, x2+ddx, y2+ddy)
|
||
|
|
||
|
grid_info = {
|
||
|
"extremes": extremes,
|
||
|
"lon_lines": lon_lines,
|
||
|
"lat_lines": lat_lines,
|
||
|
"lon": self._clip_grid_lines_and_find_ticks(
|
||
|
lon_lines, lon_values, lon_levs, bb),
|
||
|
"lat": self._clip_grid_lines_and_find_ticks(
|
||
|
lat_lines, lat_values, lat_levs, bb),
|
||
|
}
|
||
|
|
||
|
tck_labels = grid_info["lon"]["tick_labels"] = {}
|
||
|
for direction in ["left", "bottom", "right", "top"]:
|
||
|
levs = grid_info["lon"]["tick_levels"][direction]
|
||
|
tck_labels[direction] = self.tick_formatter1(
|
||
|
direction, lon_factor, levs)
|
||
|
|
||
|
tck_labels = grid_info["lat"]["tick_labels"] = {}
|
||
|
for direction in ["left", "bottom", "right", "top"]:
|
||
|
levs = grid_info["lat"]["tick_levels"][direction]
|
||
|
tck_labels[direction] = self.tick_formatter2(
|
||
|
direction, lat_factor, levs)
|
||
|
|
||
|
return grid_info
|
||
|
|
||
|
def _get_raw_grid_lines(self,
|
||
|
lon_values, lat_values,
|
||
|
lon_min, lon_max, lat_min, lat_max):
|
||
|
|
||
|
lons_i = np.linspace(lon_min, lon_max, 100) # for interpolation
|
||
|
lats_i = np.linspace(lat_min, lat_max, 100)
|
||
|
|
||
|
lon_lines = [self.transform_xy(np.full_like(lats_i, lon), lats_i)
|
||
|
for lon in lon_values]
|
||
|
lat_lines = [self.transform_xy(lons_i, np.full_like(lons_i, lat))
|
||
|
for lat in lat_values]
|
||
|
|
||
|
return lon_lines, lat_lines
|
||
|
|
||
|
def _clip_grid_lines_and_find_ticks(self, lines, values, levs, bb):
|
||
|
gi = {
|
||
|
"values": [],
|
||
|
"levels": [],
|
||
|
"tick_levels": dict(left=[], bottom=[], right=[], top=[]),
|
||
|
"tick_locs": dict(left=[], bottom=[], right=[], top=[]),
|
||
|
"lines": [],
|
||
|
}
|
||
|
|
||
|
tck_levels = gi["tick_levels"]
|
||
|
tck_locs = gi["tick_locs"]
|
||
|
for (lx, ly), v, lev in zip(lines, values, levs):
|
||
|
xy, tcks = clip_line_to_rect(lx, ly, bb)
|
||
|
if not xy:
|
||
|
continue
|
||
|
gi["levels"].append(v)
|
||
|
gi["lines"].append(xy)
|
||
|
|
||
|
for tck, direction in zip(tcks,
|
||
|
["left", "bottom", "right", "top"]):
|
||
|
for t in tck:
|
||
|
tck_levels[direction].append(lev)
|
||
|
tck_locs[direction].append(t)
|
||
|
|
||
|
return gi
|
||
|
|
||
|
def update_transform(self, aux_trans):
|
||
|
if isinstance(aux_trans, Transform):
|
||
|
def transform_xy(x, y):
|
||
|
ll1 = np.column_stack([x, y])
|
||
|
ll2 = aux_trans.transform(ll1)
|
||
|
lon, lat = ll2[:, 0], ll2[:, 1]
|
||
|
return lon, lat
|
||
|
|
||
|
def inv_transform_xy(x, y):
|
||
|
ll1 = np.column_stack([x, y])
|
||
|
ll2 = aux_trans.inverted().transform(ll1)
|
||
|
lon, lat = ll2[:, 0], ll2[:, 1]
|
||
|
return lon, lat
|
||
|
|
||
|
else:
|
||
|
transform_xy, inv_transform_xy = aux_trans
|
||
|
|
||
|
self.transform_xy = transform_xy
|
||
|
self.inv_transform_xy = inv_transform_xy
|
||
|
|
||
|
def update(self, **kw):
|
||
|
for k in kw:
|
||
|
if k in ["extreme_finder",
|
||
|
"grid_locator1",
|
||
|
"grid_locator2",
|
||
|
"tick_formatter1",
|
||
|
"tick_formatter2"]:
|
||
|
setattr(self, k, kw[k])
|
||
|
else:
|
||
|
raise ValueError("Unknown update property '%s'" % k)
|
||
|
|
||
|
|
||
|
@cbook.deprecated("3.2")
|
||
|
class GridFinderBase(GridFinder):
|
||
|
def __init__(self,
|
||
|
extreme_finder,
|
||
|
grid_locator1=None,
|
||
|
grid_locator2=None,
|
||
|
tick_formatter1=None,
|
||
|
tick_formatter2=None):
|
||
|
super().__init__((None, None), extreme_finder,
|
||
|
grid_locator1, grid_locator2,
|
||
|
tick_formatter1, tick_formatter2)
|
||
|
|
||
|
|
||
|
class MaxNLocator(mticker.MaxNLocator):
|
||
|
def __init__(self, nbins=10, steps=None,
|
||
|
trim=True,
|
||
|
integer=False,
|
||
|
symmetric=False,
|
||
|
prune=None):
|
||
|
# trim argument has no effect. It has been left for API compatibility
|
||
|
mticker.MaxNLocator.__init__(self, nbins, steps=steps,
|
||
|
integer=integer,
|
||
|
symmetric=symmetric, prune=prune)
|
||
|
self.create_dummy_axis()
|
||
|
self._factor = 1
|
||
|
|
||
|
def __call__(self, v1, v2):
|
||
|
self.set_bounds(v1 * self._factor, v2 * self._factor)
|
||
|
locs = mticker.MaxNLocator.__call__(self)
|
||
|
return np.array(locs), len(locs), self._factor
|
||
|
|
||
|
@cbook.deprecated("3.3")
|
||
|
def set_factor(self, f):
|
||
|
self._factor = _deprecate_factor_none(f)
|
||
|
|
||
|
|
||
|
class FixedLocator:
|
||
|
def __init__(self, locs):
|
||
|
self._locs = locs
|
||
|
self._factor = 1
|
||
|
|
||
|
def __call__(self, v1, v2):
|
||
|
v1, v2 = sorted([v1 * self._factor, v2 * self._factor])
|
||
|
locs = np.array([l for l in self._locs if v1 <= l <= v2])
|
||
|
return locs, len(locs), self._factor
|
||
|
|
||
|
@cbook.deprecated("3.3")
|
||
|
def set_factor(self, f):
|
||
|
self._factor = _deprecate_factor_none(f)
|
||
|
|
||
|
|
||
|
# Tick Formatter
|
||
|
|
||
|
class FormatterPrettyPrint:
|
||
|
def __init__(self, useMathText=True):
|
||
|
self._fmt = mticker.ScalarFormatter(
|
||
|
useMathText=useMathText, useOffset=False)
|
||
|
self._fmt.create_dummy_axis()
|
||
|
|
||
|
def __call__(self, direction, factor, values):
|
||
|
return self._fmt.format_ticks(values)
|
||
|
|
||
|
|
||
|
class DictFormatter:
|
||
|
def __init__(self, format_dict, formatter=None):
|
||
|
"""
|
||
|
format_dict : dictionary for format strings to be used.
|
||
|
formatter : fall-back formatter
|
||
|
"""
|
||
|
super().__init__()
|
||
|
self._format_dict = format_dict
|
||
|
self._fallback_formatter = formatter
|
||
|
|
||
|
def __call__(self, direction, factor, values):
|
||
|
"""
|
||
|
factor is ignored if value is found in the dictionary
|
||
|
"""
|
||
|
if self._fallback_formatter:
|
||
|
fallback_strings = self._fallback_formatter(
|
||
|
direction, factor, values)
|
||
|
else:
|
||
|
fallback_strings = [""] * len(values)
|
||
|
return [self._format_dict.get(k, v)
|
||
|
for k, v in zip(values, fallback_strings)]
|