Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/sklearn/preprocessing/tests/test_label.py

657 lines
23 KiB
Python
Raw Normal View History

2020-11-12 11:05:57 -05:00
import numpy as np
import pytest
from scipy.sparse import issparse
from scipy.sparse import coo_matrix
from scipy.sparse import csc_matrix
from scipy.sparse import csr_matrix
from scipy.sparse import dok_matrix
from scipy.sparse import lil_matrix
from sklearn.utils.multiclass import type_of_target
from sklearn.utils._testing import assert_array_equal
from sklearn.utils._testing import assert_warns_message
from sklearn.utils._testing import ignore_warnings
from sklearn.utils import _to_object_array
from sklearn.preprocessing._label import LabelBinarizer
from sklearn.preprocessing._label import MultiLabelBinarizer
from sklearn.preprocessing._label import LabelEncoder
from sklearn.preprocessing._label import label_binarize
from sklearn.preprocessing._label import _inverse_binarize_thresholding
from sklearn.preprocessing._label import _inverse_binarize_multiclass
from sklearn.preprocessing._label import _encode
from sklearn import datasets
iris = datasets.load_iris()
def toarray(a):
if hasattr(a, "toarray"):
a = a.toarray()
return a
def test_label_binarizer():
# one-class case defaults to negative label
# For dense case:
inp = ["pos", "pos", "pos", "pos"]
lb = LabelBinarizer(sparse_output=False)
expected = np.array([[0, 0, 0, 0]]).T
got = lb.fit_transform(inp)
assert_array_equal(lb.classes_, ["pos"])
assert_array_equal(expected, got)
assert_array_equal(lb.inverse_transform(got), inp)
# For sparse case:
lb = LabelBinarizer(sparse_output=True)
got = lb.fit_transform(inp)
assert issparse(got)
assert_array_equal(lb.classes_, ["pos"])
assert_array_equal(expected, got.toarray())
assert_array_equal(lb.inverse_transform(got.toarray()), inp)
lb = LabelBinarizer(sparse_output=False)
# two-class case
inp = ["neg", "pos", "pos", "neg"]
expected = np.array([[0, 1, 1, 0]]).T
got = lb.fit_transform(inp)
assert_array_equal(lb.classes_, ["neg", "pos"])
assert_array_equal(expected, got)
to_invert = np.array([[1, 0],
[0, 1],
[0, 1],
[1, 0]])
assert_array_equal(lb.inverse_transform(to_invert), inp)
# multi-class case
inp = ["spam", "ham", "eggs", "ham", "0"]
expected = np.array([[0, 0, 0, 1],
[0, 0, 1, 0],
[0, 1, 0, 0],
[0, 0, 1, 0],
[1, 0, 0, 0]])
got = lb.fit_transform(inp)
assert_array_equal(lb.classes_, ['0', 'eggs', 'ham', 'spam'])
assert_array_equal(expected, got)
assert_array_equal(lb.inverse_transform(got), inp)
def test_label_binarizer_unseen_labels():
lb = LabelBinarizer()
expected = np.array([[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
got = lb.fit_transform(['b', 'd', 'e'])
assert_array_equal(expected, got)
expected = np.array([[0, 0, 0],
[1, 0, 0],
[0, 0, 0],
[0, 1, 0],
[0, 0, 1],
[0, 0, 0]])
got = lb.transform(['a', 'b', 'c', 'd', 'e', 'f'])
assert_array_equal(expected, got)
def test_label_binarizer_set_label_encoding():
lb = LabelBinarizer(neg_label=-2, pos_label=0)
# two-class case with pos_label=0
inp = np.array([0, 1, 1, 0])
expected = np.array([[-2, 0, 0, -2]]).T
got = lb.fit_transform(inp)
assert_array_equal(expected, got)
assert_array_equal(lb.inverse_transform(got), inp)
lb = LabelBinarizer(neg_label=-2, pos_label=2)
# multi-class case
inp = np.array([3, 2, 1, 2, 0])
expected = np.array([[-2, -2, -2, +2],
[-2, -2, +2, -2],
[-2, +2, -2, -2],
[-2, -2, +2, -2],
[+2, -2, -2, -2]])
got = lb.fit_transform(inp)
assert_array_equal(expected, got)
assert_array_equal(lb.inverse_transform(got), inp)
@ignore_warnings
def test_label_binarizer_errors():
# Check that invalid arguments yield ValueError
one_class = np.array([0, 0, 0, 0])
lb = LabelBinarizer().fit(one_class)
multi_label = [(2, 3), (0,), (0, 2)]
with pytest.raises(ValueError):
lb.transform(multi_label)
lb = LabelBinarizer()
with pytest.raises(ValueError):
lb.transform([])
with pytest.raises(ValueError):
lb.inverse_transform([])
with pytest.raises(ValueError):
LabelBinarizer(neg_label=2, pos_label=1)
with pytest.raises(ValueError):
LabelBinarizer(neg_label=2, pos_label=2)
with pytest.raises(ValueError):
LabelBinarizer(neg_label=1, pos_label=2, sparse_output=True)
# Fail on y_type
with pytest.raises(ValueError):
_inverse_binarize_thresholding(y=csr_matrix([[1, 2], [2, 1]]),
output_type="foo", classes=[1, 2],
threshold=0)
# Sequence of seq type should raise ValueError
y_seq_of_seqs = [[], [1, 2], [3], [0, 1, 3], [2]]
with pytest.raises(ValueError):
LabelBinarizer().fit_transform(y_seq_of_seqs)
# Fail on the number of classes
with pytest.raises(ValueError):
_inverse_binarize_thresholding(y=csr_matrix([[1, 2], [2, 1]]),
output_type="foo",
classes=[1, 2, 3],
threshold=0)
# Fail on the dimension of 'binary'
with pytest.raises(ValueError):
_inverse_binarize_thresholding(y=np.array([[1, 2, 3], [2, 1, 3]]),
output_type="binary",
classes=[1, 2, 3],
threshold=0)
# Fail on multioutput data
with pytest.raises(ValueError):
LabelBinarizer().fit(np.array([[1, 3], [2, 1]]))
with pytest.raises(ValueError):
label_binarize(np.array([[1, 3], [2, 1]]), classes=[1, 2, 3])
@pytest.mark.parametrize(
"values, classes, unknown",
[(np.array([2, 1, 3, 1, 3], dtype='int64'),
np.array([1, 2, 3], dtype='int64'), np.array([4], dtype='int64')),
(np.array(['b', 'a', 'c', 'a', 'c'], dtype=object),
np.array(['a', 'b', 'c'], dtype=object),
np.array(['d'], dtype=object)),
(np.array(['b', 'a', 'c', 'a', 'c']),
np.array(['a', 'b', 'c']), np.array(['d']))],
ids=['int64', 'object', 'str'])
def test_label_encoder(values, classes, unknown):
# Test LabelEncoder's transform, fit_transform and
# inverse_transform methods
le = LabelEncoder()
le.fit(values)
assert_array_equal(le.classes_, classes)
assert_array_equal(le.transform(values), [1, 0, 2, 0, 2])
assert_array_equal(le.inverse_transform([1, 0, 2, 0, 2]), values)
le = LabelEncoder()
ret = le.fit_transform(values)
assert_array_equal(ret, [1, 0, 2, 0, 2])
with pytest.raises(ValueError, match="unseen labels"):
le.transform(unknown)
def test_label_encoder_negative_ints():
le = LabelEncoder()
le.fit([1, 1, 4, 5, -1, 0])
assert_array_equal(le.classes_, [-1, 0, 1, 4, 5])
assert_array_equal(le.transform([0, 1, 4, 4, 5, -1, -1]),
[1, 2, 3, 3, 4, 0, 0])
assert_array_equal(le.inverse_transform([1, 2, 3, 3, 4, 0, 0]),
[0, 1, 4, 4, 5, -1, -1])
with pytest.raises(ValueError):
le.transform([0, 6])
@pytest.mark.parametrize("dtype", ['str', 'object'])
def test_label_encoder_str_bad_shape(dtype):
le = LabelEncoder()
le.fit(np.array(["apple", "orange"], dtype=dtype))
msg = "should be a 1d array"
with pytest.raises(ValueError, match=msg):
le.transform("apple")
def test_label_encoder_errors():
# Check that invalid arguments yield ValueError
le = LabelEncoder()
with pytest.raises(ValueError):
le.transform([])
with pytest.raises(ValueError):
le.inverse_transform([])
# Fail on unseen labels
le = LabelEncoder()
le.fit([1, 2, 3, -1, 1])
msg = "contains previously unseen labels"
with pytest.raises(ValueError, match=msg):
le.inverse_transform([-2])
with pytest.raises(ValueError, match=msg):
le.inverse_transform([-2, -3, -4])
# Fail on inverse_transform("")
msg = r"should be a 1d array.+shape \(\)"
with pytest.raises(ValueError, match=msg):
le.inverse_transform("")
@pytest.mark.parametrize(
"values",
[np.array([2, 1, 3, 1, 3], dtype='int64'),
np.array(['b', 'a', 'c', 'a', 'c'], dtype=object),
np.array(['b', 'a', 'c', 'a', 'c'])],
ids=['int64', 'object', 'str'])
def test_label_encoder_empty_array(values):
le = LabelEncoder()
le.fit(values)
# test empty transform
transformed = le.transform([])
assert_array_equal(np.array([]), transformed)
# test empty inverse transform
inverse_transformed = le.inverse_transform([])
assert_array_equal(np.array([]), inverse_transformed)
def test_sparse_output_multilabel_binarizer():
# test input as iterable of iterables
inputs = [
lambda: [(2, 3), (1,), (1, 2)],
lambda: ({2, 3}, {1}, {1, 2}),
lambda: iter([iter((2, 3)), iter((1,)), {1, 2}]),
]
indicator_mat = np.array([[0, 1, 1],
[1, 0, 0],
[1, 1, 0]])
inverse = inputs[0]()
for sparse_output in [True, False]:
for inp in inputs:
# With fit_transform
mlb = MultiLabelBinarizer(sparse_output=sparse_output)
got = mlb.fit_transform(inp())
assert issparse(got) == sparse_output
if sparse_output:
# verify CSR assumption that indices and indptr have same dtype
assert got.indices.dtype == got.indptr.dtype
got = got.toarray()
assert_array_equal(indicator_mat, got)
assert_array_equal([1, 2, 3], mlb.classes_)
assert mlb.inverse_transform(got) == inverse
# With fit
mlb = MultiLabelBinarizer(sparse_output=sparse_output)
got = mlb.fit(inp()).transform(inp())
assert issparse(got) == sparse_output
if sparse_output:
# verify CSR assumption that indices and indptr have same dtype
assert got.indices.dtype == got.indptr.dtype
got = got.toarray()
assert_array_equal(indicator_mat, got)
assert_array_equal([1, 2, 3], mlb.classes_)
assert mlb.inverse_transform(got) == inverse
with pytest.raises(ValueError):
mlb.inverse_transform(csr_matrix(np.array([[0, 1, 1],
[2, 0, 0],
[1, 1, 0]])))
def test_multilabel_binarizer():
# test input as iterable of iterables
inputs = [
lambda: [(2, 3), (1,), (1, 2)],
lambda: ({2, 3}, {1}, {1, 2}),
lambda: iter([iter((2, 3)), iter((1,)), {1, 2}]),
]
indicator_mat = np.array([[0, 1, 1],
[1, 0, 0],
[1, 1, 0]])
inverse = inputs[0]()
for inp in inputs:
# With fit_transform
mlb = MultiLabelBinarizer()
got = mlb.fit_transform(inp())
assert_array_equal(indicator_mat, got)
assert_array_equal([1, 2, 3], mlb.classes_)
assert mlb.inverse_transform(got) == inverse
# With fit
mlb = MultiLabelBinarizer()
got = mlb.fit(inp()).transform(inp())
assert_array_equal(indicator_mat, got)
assert_array_equal([1, 2, 3], mlb.classes_)
assert mlb.inverse_transform(got) == inverse
def test_multilabel_binarizer_empty_sample():
mlb = MultiLabelBinarizer()
y = [[1, 2], [1], []]
Y = np.array([[1, 1],
[1, 0],
[0, 0]])
assert_array_equal(mlb.fit_transform(y), Y)
def test_multilabel_binarizer_unknown_class():
mlb = MultiLabelBinarizer()
y = [[1, 2]]
Y = np.array([[1, 0], [0, 1]])
w = 'unknown class(es) [0, 4] will be ignored'
matrix = assert_warns_message(UserWarning, w,
mlb.fit(y).transform, [[4, 1], [2, 0]])
assert_array_equal(matrix, Y)
Y = np.array([[1, 0, 0], [0, 1, 0]])
mlb = MultiLabelBinarizer(classes=[1, 2, 3])
matrix = assert_warns_message(UserWarning, w,
mlb.fit(y).transform, [[4, 1], [2, 0]])
assert_array_equal(matrix, Y)
def test_multilabel_binarizer_given_classes():
inp = [(2, 3), (1,), (1, 2)]
indicator_mat = np.array([[0, 1, 1],
[1, 0, 0],
[1, 0, 1]])
# fit_transform()
mlb = MultiLabelBinarizer(classes=[1, 3, 2])
assert_array_equal(mlb.fit_transform(inp), indicator_mat)
assert_array_equal(mlb.classes_, [1, 3, 2])
# fit().transform()
mlb = MultiLabelBinarizer(classes=[1, 3, 2])
assert_array_equal(mlb.fit(inp).transform(inp), indicator_mat)
assert_array_equal(mlb.classes_, [1, 3, 2])
# ensure works with extra class
mlb = MultiLabelBinarizer(classes=[4, 1, 3, 2])
assert_array_equal(mlb.fit_transform(inp),
np.hstack(([[0], [0], [0]], indicator_mat)))
assert_array_equal(mlb.classes_, [4, 1, 3, 2])
# ensure fit is no-op as iterable is not consumed
inp = iter(inp)
mlb = MultiLabelBinarizer(classes=[1, 3, 2])
assert_array_equal(mlb.fit(inp).transform(inp), indicator_mat)
# ensure a ValueError is thrown if given duplicate classes
err_msg = "The classes argument contains duplicate classes. Remove " \
"these duplicates before passing them to MultiLabelBinarizer."
mlb = MultiLabelBinarizer(classes=[1, 3, 2, 3])
with pytest.raises(ValueError, match=err_msg):
mlb.fit(inp)
def test_multilabel_binarizer_multiple_calls():
inp = [(2, 3), (1,), (1, 2)]
indicator_mat = np.array([[0, 1, 1],
[1, 0, 0],
[1, 0, 1]])
indicator_mat2 = np.array([[0, 1, 1],
[1, 0, 0],
[1, 1, 0]])
# first call
mlb = MultiLabelBinarizer(classes=[1, 3, 2])
assert_array_equal(mlb.fit_transform(inp), indicator_mat)
# second call change class
mlb.classes = [1, 2, 3]
assert_array_equal(mlb.fit_transform(inp), indicator_mat2)
def test_multilabel_binarizer_same_length_sequence():
# Ensure sequences of the same length are not interpreted as a 2-d array
inp = [[1], [0], [2]]
indicator_mat = np.array([[0, 1, 0],
[1, 0, 0],
[0, 0, 1]])
# fit_transform()
mlb = MultiLabelBinarizer()
assert_array_equal(mlb.fit_transform(inp), indicator_mat)
assert_array_equal(mlb.inverse_transform(indicator_mat), inp)
# fit().transform()
mlb = MultiLabelBinarizer()
assert_array_equal(mlb.fit(inp).transform(inp), indicator_mat)
assert_array_equal(mlb.inverse_transform(indicator_mat), inp)
def test_multilabel_binarizer_non_integer_labels():
tuple_classes = _to_object_array([(1,), (2,), (3,)])
inputs = [
([('2', '3'), ('1',), ('1', '2')], ['1', '2', '3']),
([('b', 'c'), ('a',), ('a', 'b')], ['a', 'b', 'c']),
([((2,), (3,)), ((1,),), ((1,), (2,))], tuple_classes),
]
indicator_mat = np.array([[0, 1, 1],
[1, 0, 0],
[1, 1, 0]])
for inp, classes in inputs:
# fit_transform()
mlb = MultiLabelBinarizer()
assert_array_equal(mlb.fit_transform(inp), indicator_mat)
assert_array_equal(mlb.classes_, classes)
assert_array_equal(mlb.inverse_transform(indicator_mat), inp)
# fit().transform()
mlb = MultiLabelBinarizer()
assert_array_equal(mlb.fit(inp).transform(inp), indicator_mat)
assert_array_equal(mlb.classes_, classes)
assert_array_equal(mlb.inverse_transform(indicator_mat), inp)
mlb = MultiLabelBinarizer()
with pytest.raises(TypeError):
mlb.fit_transform([({}), ({}, {'a': 'b'})])
def test_multilabel_binarizer_non_unique():
inp = [(1, 1, 1, 0)]
indicator_mat = np.array([[1, 1]])
mlb = MultiLabelBinarizer()
assert_array_equal(mlb.fit_transform(inp), indicator_mat)
def test_multilabel_binarizer_inverse_validation():
inp = [(1, 1, 1, 0)]
mlb = MultiLabelBinarizer()
mlb.fit_transform(inp)
# Not binary
with pytest.raises(ValueError):
mlb.inverse_transform(np.array([[1, 3]]))
# The following binary cases are fine, however
mlb.inverse_transform(np.array([[0, 0]]))
mlb.inverse_transform(np.array([[1, 1]]))
mlb.inverse_transform(np.array([[1, 0]]))
# Wrong shape
with pytest.raises(ValueError):
mlb.inverse_transform(np.array([[1]]))
with pytest.raises(ValueError):
mlb.inverse_transform(np.array([[1, 1, 1]]))
def test_label_binarize_with_class_order():
out = label_binarize([1, 6], classes=[1, 2, 4, 6])
expected = np.array([[1, 0, 0, 0], [0, 0, 0, 1]])
assert_array_equal(out, expected)
# Modified class order
out = label_binarize([1, 6], classes=[1, 6, 4, 2])
expected = np.array([[1, 0, 0, 0], [0, 1, 0, 0]])
assert_array_equal(out, expected)
out = label_binarize([0, 1, 2, 3], classes=[3, 2, 0, 1])
expected = np.array([[0, 0, 1, 0],
[0, 0, 0, 1],
[0, 1, 0, 0],
[1, 0, 0, 0]])
assert_array_equal(out, expected)
def check_binarized_results(y, classes, pos_label, neg_label, expected):
for sparse_output in [True, False]:
if ((pos_label == 0 or neg_label != 0) and sparse_output):
with pytest.raises(ValueError):
label_binarize(y, classes=classes, neg_label=neg_label,
pos_label=pos_label,
sparse_output=sparse_output)
continue
# check label_binarize
binarized = label_binarize(y, classes=classes, neg_label=neg_label,
pos_label=pos_label,
sparse_output=sparse_output)
assert_array_equal(toarray(binarized), expected)
assert issparse(binarized) == sparse_output
# check inverse
y_type = type_of_target(y)
if y_type == "multiclass":
inversed = _inverse_binarize_multiclass(binarized, classes=classes)
else:
inversed = _inverse_binarize_thresholding(binarized,
output_type=y_type,
classes=classes,
threshold=((neg_label +
pos_label) /
2.))
assert_array_equal(toarray(inversed), toarray(y))
# Check label binarizer
lb = LabelBinarizer(neg_label=neg_label, pos_label=pos_label,
sparse_output=sparse_output)
binarized = lb.fit_transform(y)
assert_array_equal(toarray(binarized), expected)
assert issparse(binarized) == sparse_output
inverse_output = lb.inverse_transform(binarized)
assert_array_equal(toarray(inverse_output), toarray(y))
assert issparse(inverse_output) == issparse(y)
def test_label_binarize_binary():
y = [0, 1, 0]
classes = [0, 1]
pos_label = 2
neg_label = -1
expected = np.array([[2, -1], [-1, 2], [2, -1]])[:, 1].reshape((-1, 1))
check_binarized_results(y, classes, pos_label, neg_label, expected)
# Binary case where sparse_output = True will not result in a ValueError
y = [0, 1, 0]
classes = [0, 1]
pos_label = 3
neg_label = 0
expected = np.array([[3, 0], [0, 3], [3, 0]])[:, 1].reshape((-1, 1))
check_binarized_results(y, classes, pos_label, neg_label, expected)
def test_label_binarize_multiclass():
y = [0, 1, 2]
classes = [0, 1, 2]
pos_label = 2
neg_label = 0
expected = 2 * np.eye(3)
check_binarized_results(y, classes, pos_label, neg_label, expected)
with pytest.raises(ValueError):
label_binarize(y, classes=classes, neg_label=-1, pos_label=pos_label,
sparse_output=True)
def test_label_binarize_multilabel():
y_ind = np.array([[0, 1, 0], [1, 1, 1], [0, 0, 0]])
classes = [0, 1, 2]
pos_label = 2
neg_label = 0
expected = pos_label * y_ind
y_sparse = [sparse_matrix(y_ind)
for sparse_matrix in [coo_matrix, csc_matrix, csr_matrix,
dok_matrix, lil_matrix]]
for y in [y_ind] + y_sparse:
check_binarized_results(y, classes, pos_label, neg_label,
expected)
with pytest.raises(ValueError):
label_binarize(y, classes=classes, neg_label=-1, pos_label=pos_label,
sparse_output=True)
def test_invalid_input_label_binarize():
with pytest.raises(ValueError):
label_binarize([0, 2], classes=[0, 2], pos_label=0, neg_label=1)
with pytest.raises(ValueError, match="continuous target data is not "):
label_binarize([1.2, 2.7], classes=[0, 1])
with pytest.raises(ValueError, match="mismatch with the labels"):
label_binarize([[1, 3]], classes=[1, 2, 3])
def test_inverse_binarize_multiclass():
got = _inverse_binarize_multiclass(csr_matrix([[0, 1, 0],
[-1, 0, -1],
[0, 0, 0]]),
np.arange(3))
assert_array_equal(got, np.array([1, 1, 0]))
@pytest.mark.parametrize(
"values, expected",
[(np.array([2, 1, 3, 1, 3], dtype='int64'),
np.array([1, 2, 3], dtype='int64')),
(np.array(['b', 'a', 'c', 'a', 'c'], dtype=object),
np.array(['a', 'b', 'c'], dtype=object)),
(np.array(['b', 'a', 'c', 'a', 'c']),
np.array(['a', 'b', 'c']))],
ids=['int64', 'object', 'str'])
def test_encode_util(values, expected):
uniques = _encode(values)
assert_array_equal(uniques, expected)
uniques, encoded = _encode(values, encode=True)
assert_array_equal(uniques, expected)
assert_array_equal(encoded, np.array([1, 0, 2, 0, 2]))
_, encoded = _encode(values, uniques, encode=True)
assert_array_equal(encoded, np.array([1, 0, 2, 0, 2]))
def test_encode_check_unknown():
# test for the check_unknown parameter of _encode()
uniques = np.array([1, 2, 3])
values = np.array([1, 2, 3, 4])
# Default is True, raise error
with pytest.raises(ValueError,
match='y contains previously unseen labels'):
_encode(values, uniques, encode=True, check_unknown=True)
# dont raise error if False
_encode(values, uniques, encode=True, check_unknown=False)
# parameter is ignored for object dtype
uniques = np.array(['a', 'b', 'c'], dtype=object)
values = np.array(['a', 'b', 'c', 'd'], dtype=object)
with pytest.raises(ValueError,
match='y contains previously unseen labels'):
_encode(values, uniques, encode=True, check_unknown=False)