Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/sklearn/datasets/_kddcup99.py

319 lines
11 KiB
Python
Raw Permalink Normal View History

2020-11-12 16:05:57 +00:00
"""KDDCUP 99 dataset.
A classic dataset for anomaly detection.
The dataset page is available from UCI Machine Learning Repository
https://archive.ics.uci.edu/ml/machine-learning-databases/kddcup99-mld/kddcup.data.gz
"""
import errno
from gzip import GzipFile
import logging
import os
from os.path import dirname, exists, join
import numpy as np
import joblib
from ._base import _fetch_remote
from . import get_data_home
from ._base import RemoteFileMetadata
from ..utils import Bunch
from ..utils import check_random_state
from ..utils import shuffle as shuffle_method
from ..utils.validation import _deprecate_positional_args
# The original data can be found at:
# https://archive.ics.uci.edu/ml/machine-learning-databases/kddcup99-mld/kddcup.data.gz
ARCHIVE = RemoteFileMetadata(
filename='kddcup99_data',
url='https://ndownloader.figshare.com/files/5976045',
checksum=('3b6c942aa0356c0ca35b7b595a26c89d'
'343652c9db428893e7494f837b274292'))
# The original data can be found at:
# https://archive.ics.uci.edu/ml/machine-learning-databases/kddcup99-mld/kddcup.data_10_percent.gz
ARCHIVE_10_PERCENT = RemoteFileMetadata(
filename='kddcup99_10_data',
url='https://ndownloader.figshare.com/files/5976042',
checksum=('8045aca0d84e70e622d1148d7df78249'
'6f6333bf6eb979a1b0837c42a9fd9561'))
logger = logging.getLogger(__name__)
@_deprecate_positional_args
def fetch_kddcup99(*, subset=None, data_home=None, shuffle=False,
random_state=None,
percent10=True, download_if_missing=True, return_X_y=False):
"""Load the kddcup99 dataset (classification).
Download it if necessary.
================= ====================================
Classes 23
Samples total 4898431
Dimensionality 41
Features discrete (int) or continuous (float)
================= ====================================
Read more in the :ref:`User Guide <kddcup99_dataset>`.
.. versionadded:: 0.18
Parameters
----------
subset : None, 'SA', 'SF', 'http', 'smtp'
To return the corresponding classical subsets of kddcup 99.
If None, return the entire kddcup 99 dataset.
data_home : string, optional
Specify another download and cache folder for the datasets. By default
all scikit-learn data is stored in '~/scikit_learn_data' subfolders.
.. versionadded:: 0.19
shuffle : bool, default=False
Whether to shuffle dataset.
random_state : int, RandomState instance, default=None
Determines random number generation for dataset shuffling and for
selection of abnormal samples if `subset='SA'`. Pass an int for
reproducible output across multiple function calls.
See :term:`Glossary <random_state>`.
percent10 : bool, default=True
Whether to load only 10 percent of the data.
download_if_missing : bool, default=True
If False, raise a IOError if the data is not locally available
instead of trying to download the data from the source site.
return_X_y : boolean, default=False.
If True, returns ``(data, target)`` instead of a Bunch object. See
below for more information about the `data` and `target` object.
.. versionadded:: 0.20
Returns
-------
data : :class:`~sklearn.utils.Bunch`
Dictionary-like object, with the following attributes.
data : ndarray of shape (494021, 41)
The data matrix to learn.
target : ndarray of shape (494021,)
The regression target for each sample.
DESCR : str
The full description of the dataset.
(data, target) : tuple if ``return_X_y`` is True
.. versionadded:: 0.20
"""
data_home = get_data_home(data_home=data_home)
kddcup99 = _fetch_brute_kddcup99(data_home=data_home,
percent10=percent10,
download_if_missing=download_if_missing)
data = kddcup99.data
target = kddcup99.target
if subset == 'SA':
s = target == b'normal.'
t = np.logical_not(s)
normal_samples = data[s, :]
normal_targets = target[s]
abnormal_samples = data[t, :]
abnormal_targets = target[t]
n_samples_abnormal = abnormal_samples.shape[0]
# selected abnormal samples:
random_state = check_random_state(random_state)
r = random_state.randint(0, n_samples_abnormal, 3377)
abnormal_samples = abnormal_samples[r]
abnormal_targets = abnormal_targets[r]
data = np.r_[normal_samples, abnormal_samples]
target = np.r_[normal_targets, abnormal_targets]
if subset == 'SF' or subset == 'http' or subset == 'smtp':
# select all samples with positive logged_in attribute:
s = data[:, 11] == 1
data = np.c_[data[s, :11], data[s, 12:]]
target = target[s]
data[:, 0] = np.log((data[:, 0] + 0.1).astype(float, copy=False))
data[:, 4] = np.log((data[:, 4] + 0.1).astype(float, copy=False))
data[:, 5] = np.log((data[:, 5] + 0.1).astype(float, copy=False))
if subset == 'http':
s = data[:, 2] == b'http'
data = data[s]
target = target[s]
data = np.c_[data[:, 0], data[:, 4], data[:, 5]]
if subset == 'smtp':
s = data[:, 2] == b'smtp'
data = data[s]
target = target[s]
data = np.c_[data[:, 0], data[:, 4], data[:, 5]]
if subset == 'SF':
data = np.c_[data[:, 0], data[:, 2], data[:, 4], data[:, 5]]
if shuffle:
data, target = shuffle_method(data, target, random_state=random_state)
module_path = dirname(__file__)
with open(join(module_path, 'descr', 'kddcup99.rst')) as rst_file:
fdescr = rst_file.read()
if return_X_y:
return data, target
return Bunch(data=data, target=target, DESCR=fdescr)
def _fetch_brute_kddcup99(data_home=None,
download_if_missing=True, percent10=True):
"""Load the kddcup99 dataset, downloading it if necessary.
Parameters
----------
data_home : string, optional
Specify another download and cache folder for the datasets. By default
all scikit-learn data is stored in '~/scikit_learn_data' subfolders.
download_if_missing : boolean, default=True
If False, raise a IOError if the data is not locally available
instead of trying to download the data from the source site.
percent10 : bool, default=True
Whether to load only 10 percent of the data.
Returns
-------
dataset : :class:`~sklearn.utils.Bunch`
Dictionary-like object, with the following attributes.
data : numpy array of shape (494021, 41)
Each row corresponds to the 41 features in the dataset.
target : numpy array of shape (494021,)
Each value corresponds to one of the 21 attack types or to the
label 'normal.'.
DESCR : string
Description of the kddcup99 dataset.
"""
data_home = get_data_home(data_home=data_home)
dir_suffix = "-py3"
if percent10:
kddcup_dir = join(data_home, "kddcup99_10" + dir_suffix)
archive = ARCHIVE_10_PERCENT
else:
kddcup_dir = join(data_home, "kddcup99" + dir_suffix)
archive = ARCHIVE
samples_path = join(kddcup_dir, "samples")
targets_path = join(kddcup_dir, "targets")
available = exists(samples_path)
if download_if_missing and not available:
_mkdirp(kddcup_dir)
logger.info("Downloading %s" % archive.url)
_fetch_remote(archive, dirname=kddcup_dir)
dt = [('duration', int),
('protocol_type', 'S4'),
('service', 'S11'),
('flag', 'S6'),
('src_bytes', int),
('dst_bytes', int),
('land', int),
('wrong_fragment', int),
('urgent', int),
('hot', int),
('num_failed_logins', int),
('logged_in', int),
('num_compromised', int),
('root_shell', int),
('su_attempted', int),
('num_root', int),
('num_file_creations', int),
('num_shells', int),
('num_access_files', int),
('num_outbound_cmds', int),
('is_host_login', int),
('is_guest_login', int),
('count', int),
('srv_count', int),
('serror_rate', float),
('srv_serror_rate', float),
('rerror_rate', float),
('srv_rerror_rate', float),
('same_srv_rate', float),
('diff_srv_rate', float),
('srv_diff_host_rate', float),
('dst_host_count', int),
('dst_host_srv_count', int),
('dst_host_same_srv_rate', float),
('dst_host_diff_srv_rate', float),
('dst_host_same_src_port_rate', float),
('dst_host_srv_diff_host_rate', float),
('dst_host_serror_rate', float),
('dst_host_srv_serror_rate', float),
('dst_host_rerror_rate', float),
('dst_host_srv_rerror_rate', float),
('labels', 'S16')]
DT = np.dtype(dt)
logger.debug("extracting archive")
archive_path = join(kddcup_dir, archive.filename)
file_ = GzipFile(filename=archive_path, mode='r')
Xy = []
for line in file_.readlines():
line = line.decode()
Xy.append(line.replace('\n', '').split(','))
file_.close()
logger.debug('extraction done')
os.remove(archive_path)
Xy = np.asarray(Xy, dtype=object)
for j in range(42):
Xy[:, j] = Xy[:, j].astype(DT[j])
X = Xy[:, :-1]
y = Xy[:, -1]
# XXX bug when compress!=0:
# (error: 'Incorrect data length while decompressing[...] the file
# could be corrupted.')
joblib.dump(X, samples_path, compress=0)
joblib.dump(y, targets_path, compress=0)
elif not available:
if not download_if_missing:
raise IOError("Data not found and `download_if_missing` is False")
try:
X, y
except NameError:
X = joblib.load(samples_path)
y = joblib.load(targets_path)
return Bunch(data=X, target=y)
def _mkdirp(d):
"""Ensure directory d exists (like mkdir -p on Unix)
No guarantee that the directory is writable.
"""
try:
os.makedirs(d)
except OSError as e:
if e.errno != errno.EEXIST:
raise