Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/skimage/transform/pyramids.py

318 lines
11 KiB
Python
Raw Permalink Normal View History

import math
import numpy as np
from scipy import ndimage as ndi
from ..transform import resize
from .._shared.utils import convert_to_float
def _smooth(image, sigma, mode, cval, multichannel=None):
"""Return image with each channel smoothed by the Gaussian filter."""
smoothed = np.empty_like(image)
# apply Gaussian filter to all channels independently
if multichannel:
sigma = (sigma, ) * (image.ndim - 1) + (0, )
ndi.gaussian_filter(image, sigma, output=smoothed,
mode=mode, cval=cval)
return smoothed
def _check_factor(factor):
if factor <= 1:
raise ValueError('scale factor must be greater than 1')
def pyramid_reduce(image, downscale=2, sigma=None, order=1,
mode='reflect', cval=0, multichannel=False,
preserve_range=False):
"""Smooth and then downsample image.
Parameters
----------
image : ndarray
Input image.
downscale : float, optional
Downscale factor.
sigma : float, optional
Sigma for Gaussian filter. Default is `2 * downscale / 6.0` which
corresponds to a filter mask twice the size of the scale factor that
covers more than 99% of the Gaussian distribution.
order : int, optional
Order of splines used in interpolation of downsampling. See
`skimage.transform.warp` for detail.
mode : {'reflect', 'constant', 'edge', 'symmetric', 'wrap'}, optional
The mode parameter determines how the array borders are handled, where
cval is the value when mode is equal to 'constant'.
cval : float, optional
Value to fill past edges of input if mode is 'constant'.
multichannel : bool, optional
Whether the last axis of the image is to be interpreted as multiple
channels or another spatial dimension.
preserve_range : bool, optional
Whether to keep the original range of values. Otherwise, the input
image is converted according to the conventions of `img_as_float`.
Also see https://scikit-image.org/docs/dev/user_guide/data_types.html
Returns
-------
out : array
Smoothed and downsampled float image.
References
----------
.. [1] http://persci.mit.edu/pub_pdfs/pyramid83.pdf
"""
_check_factor(downscale)
image = convert_to_float(image, preserve_range)
out_shape = tuple([math.ceil(d / float(downscale)) for d in image.shape])
if multichannel:
out_shape = out_shape[:-1]
if sigma is None:
# automatically determine sigma which covers > 99% of distribution
sigma = 2 * downscale / 6.0
smoothed = _smooth(image, sigma, mode, cval, multichannel)
out = resize(smoothed, out_shape, order=order, mode=mode, cval=cval,
anti_aliasing=False)
return out
def pyramid_expand(image, upscale=2, sigma=None, order=1,
mode='reflect', cval=0, multichannel=False,
preserve_range=False):
"""Upsample and then smooth image.
Parameters
----------
image : ndarray
Input image.
upscale : float, optional
Upscale factor.
sigma : float, optional
Sigma for Gaussian filter. Default is `2 * upscale / 6.0` which
corresponds to a filter mask twice the size of the scale factor that
covers more than 99% of the Gaussian distribution.
order : int, optional
Order of splines used in interpolation of upsampling. See
`skimage.transform.warp` for detail.
mode : {'reflect', 'constant', 'edge', 'symmetric', 'wrap'}, optional
The mode parameter determines how the array borders are handled, where
cval is the value when mode is equal to 'constant'.
cval : float, optional
Value to fill past edges of input if mode is 'constant'.
multichannel : bool, optional
Whether the last axis of the image is to be interpreted as multiple
channels or another spatial dimension.
preserve_range : bool, optional
Whether to keep the original range of values. Otherwise, the input
image is converted according to the conventions of `img_as_float`.
Also see https://scikit-image.org/docs/dev/user_guide/data_types.html
Returns
-------
out : array
Upsampled and smoothed float image.
References
----------
.. [1] http://persci.mit.edu/pub_pdfs/pyramid83.pdf
"""
_check_factor(upscale)
image = convert_to_float(image, preserve_range)
out_shape = tuple([math.ceil(upscale * d) for d in image.shape])
if multichannel:
out_shape = out_shape[:-1]
if sigma is None:
# automatically determine sigma which covers > 99% of distribution
sigma = 2 * upscale / 6.0
resized = resize(image, out_shape, order=order,
mode=mode, cval=cval, anti_aliasing=False)
out = _smooth(resized, sigma, mode, cval, multichannel)
return out
def pyramid_gaussian(image, max_layer=-1, downscale=2, sigma=None, order=1,
mode='reflect', cval=0, multichannel=False,
preserve_range=False):
"""Yield images of the Gaussian pyramid formed by the input image.
Recursively applies the `pyramid_reduce` function to the image, and yields
the downscaled images.
Note that the first image of the pyramid will be the original, unscaled
image. The total number of images is `max_layer + 1`. In case all layers
are computed, the last image is either a one-pixel image or the image where
the reduction does not change its shape.
Parameters
----------
image : ndarray
Input image.
max_layer : int, optional
Number of layers for the pyramid. 0th layer is the original image.
Default is -1 which builds all possible layers.
downscale : float, optional
Downscale factor.
sigma : float, optional
Sigma for Gaussian filter. Default is `2 * downscale / 6.0` which
corresponds to a filter mask twice the size of the scale factor that
covers more than 99% of the Gaussian distribution.
order : int, optional
Order of splines used in interpolation of downsampling. See
`skimage.transform.warp` for detail.
mode : {'reflect', 'constant', 'edge', 'symmetric', 'wrap'}, optional
The mode parameter determines how the array borders are handled, where
cval is the value when mode is equal to 'constant'.
cval : float, optional
Value to fill past edges of input if mode is 'constant'.
multichannel : bool, optional
Whether the last axis of the image is to be interpreted as multiple
channels or another spatial dimension.
preserve_range : bool, optional
Whether to keep the original range of values. Otherwise, the input
image is converted according to the conventions of `img_as_float`.
Also see https://scikit-image.org/docs/dev/user_guide/data_types.html
Returns
-------
pyramid : generator
Generator yielding pyramid layers as float images.
References
----------
.. [1] http://persci.mit.edu/pub_pdfs/pyramid83.pdf
"""
_check_factor(downscale)
# cast to float for consistent data type in pyramid
image = convert_to_float(image, preserve_range)
layer = 0
current_shape = image.shape
prev_layer_image = image
yield image
# build downsampled images until max_layer is reached or downscale process
# does not change image size
while layer != max_layer:
layer += 1
layer_image = pyramid_reduce(prev_layer_image, downscale, sigma, order,
mode, cval, multichannel=multichannel)
prev_shape = np.asarray(current_shape)
prev_layer_image = layer_image
current_shape = np.asarray(layer_image.shape)
# no change to previous pyramid layer
if np.all(current_shape == prev_shape):
break
yield layer_image
def pyramid_laplacian(image, max_layer=-1, downscale=2, sigma=None, order=1,
mode='reflect', cval=0, multichannel=False,
preserve_range=False):
"""Yield images of the laplacian pyramid formed by the input image.
Each layer contains the difference between the downsampled and the
downsampled, smoothed image::
layer = resize(prev_layer) - smooth(resize(prev_layer))
Note that the first image of the pyramid will be the difference between the
original, unscaled image and its smoothed version. The total number of
images is `max_layer + 1`. In case all layers are computed, the last image
is either a one-pixel image or the image where the reduction does not
change its shape.
Parameters
----------
image : ndarray
Input image.
max_layer : int, optional
Number of layers for the pyramid. 0th layer is the original image.
Default is -1 which builds all possible layers.
downscale : float, optional
Downscale factor.
sigma : float, optional
Sigma for Gaussian filter. Default is `2 * downscale / 6.0` which
corresponds to a filter mask twice the size of the scale factor that
covers more than 99% of the Gaussian distribution.
order : int, optional
Order of splines used in interpolation of downsampling. See
`skimage.transform.warp` for detail.
mode : {'reflect', 'constant', 'edge', 'symmetric', 'wrap'}, optional
The mode parameter determines how the array borders are handled, where
cval is the value when mode is equal to 'constant'.
cval : float, optional
Value to fill past edges of input if mode is 'constant'.
multichannel : bool, optional
Whether the last axis of the image is to be interpreted as multiple
channels or another spatial dimension.
preserve_range : bool, optional
Whether to keep the original range of values. Otherwise, the input
image is converted according to the conventions of `img_as_float`.
Also see https://scikit-image.org/docs/dev/user_guide/data_types.html
Returns
-------
pyramid : generator
Generator yielding pyramid layers as float images.
References
----------
.. [1] http://persci.mit.edu/pub_pdfs/pyramid83.pdf
.. [2] http://sepwww.stanford.edu/data/media/public/sep/morgan/texturematch/paper_html/node3.html
"""
_check_factor(downscale)
# cast to float for consistent data type in pyramid
image = convert_to_float(image, preserve_range)
if sigma is None:
# automatically determine sigma which covers > 99% of distribution
sigma = 2 * downscale / 6.0
current_shape = image.shape
smoothed_image = _smooth(image, sigma, mode, cval, multichannel)
yield image - smoothed_image
# build downsampled images until max_layer is reached or downscale process
# does not change image size
if max_layer == -1:
max_layer = int(np.ceil(math.log(np.max(current_shape), downscale)))
for layer in range(max_layer):
out_shape = tuple(
[math.ceil(d / float(downscale)) for d in current_shape])
if multichannel:
out_shape = out_shape[:-1]
resized_image = resize(smoothed_image, out_shape, order=order,
mode=mode, cval=cval, anti_aliasing=False)
smoothed_image = _smooth(resized_image, sigma, mode, cval,
multichannel)
current_shape = np.asarray(resized_image.shape)
yield resized_image - smoothed_image