Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/skimage/draw/_random_shapes.py

435 lines
16 KiB
Python
Raw Permalink Normal View History

import math
import numpy as np
from . import (polygon as draw_polygon, disk as draw_disk,
ellipse as draw_ellipse)
from .._shared.utils import warn
def _generate_rectangle_mask(point, image, shape, random):
"""Generate a mask for a filled rectangle shape.
The height and width of the rectangle are generated randomly.
Parameters
----------
point : tuple
The row and column of the top left corner of the rectangle.
image : tuple
The height, width and depth of the image into which the shape is placed.
shape : tuple
The minimum and maximum size of the shape to fit.
random : np.random.RandomState
The random state to use for random sampling.
Raises
------
ArithmeticError
When a shape cannot be fit into the image with the given starting
coordinates. This usually means the image dimensions are too small or
shape dimensions too large.
Returns
-------
label : tuple
A (category, ((r0, r1), (c0, c1))) tuple specifying the category and
bounding box coordinates of the shape.
indices : 2-D array
A mask of indices that the shape fills.
"""
available_width = min(image[1] - point[1], shape[1])
if available_width < shape[0]:
raise ArithmeticError('cannot fit shape to image')
available_height = min(image[0] - point[0], shape[1])
if available_height < shape[0]:
raise ArithmeticError('cannot fit shape to image')
# Pick random widths and heights.
r = random.randint(shape[0], available_height + 1)
c = random.randint(shape[0], available_width + 1)
rectangle = draw_polygon([
point[0],
point[0] + r,
point[0] + r,
point[0],
], [
point[1],
point[1],
point[1] + c,
point[1] + c,
])
label = ('rectangle', ((point[0], point[0] + r), (point[1], point[1] + c)))
return rectangle, label
def _generate_circle_mask(point, image, shape, random):
"""Generate a mask for a filled circle shape.
The radius of the circle is generated randomly.
Parameters
----------
point : tuple
The row and column of the top left corner of the rectangle.
image : tuple
The height, width and depth of the image into which the shape is placed.
shape : tuple
The minimum and maximum size and color of the shape to fit.
random : np.random.RandomState
The random state to use for random sampling.
Raises
------
ArithmeticError
When a shape cannot be fit into the image with the given starting
coordinates. This usually means the image dimensions are too small or
shape dimensions too large.
Returns
-------
label : tuple
A (category, ((r0, r1), (c0, c1))) tuple specifying the category and
bounding box coordinates of the shape.
indices : 2-D array
A mask of indices that the shape fills.
"""
if shape[0] == 1 or shape[1] == 1:
raise ValueError('size must be > 1 for circles')
min_radius = shape[0] / 2.0
max_radius = shape[1] / 2.0
left = point[1]
right = image[1] - point[1]
top = point[0]
bottom = image[0] - point[0]
available_radius = min(left, right, top, bottom, max_radius)
if available_radius < min_radius:
raise ArithmeticError('cannot fit shape to image')
radius = random.randint(min_radius, available_radius + 1)
# TODO: think about how to deprecate this
# while draw_circle was deprecated in favor of draw_disk
# switching to a label of 'disk' here
# would be a breaking change for downstream libraries
# See discussion on naming convention here
# https://github.com/scikit-image/scikit-image/pull/4428
disk = draw_disk((point[0], point[1]), radius)
# Until a deprecation path is decided, always return `'circle'`
label = ('circle', ((point[0] - radius + 1, point[0] + radius),
(point[1] - radius + 1, point[1] + radius)))
return disk, label
def _generate_triangle_mask(point, image, shape, random):
"""Generate a mask for a filled equilateral triangle shape.
The length of the sides of the triangle is generated randomly.
Parameters
----------
point : tuple
The row and column of the top left corner of a down-pointing triangle.
image : tuple
The height, width and depth of the image into which the shape is placed.
shape : tuple
The minimum and maximum size and color of the shape to fit.
random : np.random.RandomState
The random state to use for random sampling.
Raises
------
ArithmeticError
When a shape cannot be fit into the image with the given starting
coordinates. This usually means the image dimensions are too small or
shape dimensions too large.
Returns
-------
label : tuple
A (category, ((r0, r1), (c0, c1))) tuple specifying the category and
bounding box coordinates of the shape.
indices : 2-D array
A mask of indices that the shape fills.
"""
if shape[0] == 1 or shape[1] == 1:
raise ValueError('dimension must be > 1 for triangles')
available_side = min(image[1] - point[1], point[0] + 1, shape[1])
if available_side < shape[0]:
raise ArithmeticError('cannot fit shape to image')
side = random.randint(shape[0], available_side + 1)
triangle_height = int(np.ceil(np.sqrt(3 / 4.0) * side))
triangle = draw_polygon([
point[0],
point[0] - triangle_height,
point[0],
], [
point[1],
point[1] + side // 2,
point[1] + side,
])
label = ('triangle', ((point[0] - triangle_height, point[0]),
(point[1], point[1] + side)))
return triangle, label
def _generate_ellipse_mask(point, image, shape, random):
"""Generate a mask for a filled ellipse shape.
The rotation, major and minor semi-axes of the ellipse are generated
randomly.
Parameters
----------
point : tuple
The row and column of the top left corner of the rectangle.
image : tuple
The height, width and depth of the image into which the shape is
placed.
shape : tuple
The minimum and maximum size and color of the shape to fit.
random : np.random.RandomState
The random state to use for random sampling.
Raises
------
ArithmeticError
When a shape cannot be fit into the image with the given starting
coordinates. This usually means the image dimensions are too small or
shape dimensions too large.
Returns
-------
label : tuple
A (category, ((r0, r1), (c0, c1))) tuple specifying the category and
bounding box coordinates of the shape.
indices : 2-D array
A mask of indices that the shape fills.
"""
if shape[0] == 1 or shape[1] == 1:
raise ValueError('size must be > 1 for ellipses')
min_radius = shape[0] / 2.0
max_radius = shape[1] / 2.0
left = point[1]
right = image[1] - point[1]
top = point[0]
bottom = image[0] - point[0]
available_radius = min(left, right, top, bottom, max_radius)
if available_radius < min_radius:
raise ArithmeticError('cannot fit shape to image')
# NOTE: very conservative because we could take into account the fact that
# we have 2 different radii, but this is a good first approximation.
# Also, we can afford to have a uniform sampling because the ellipse will
# be rotated.
r_radius = random.uniform(min_radius, available_radius + 1)
c_radius = random.uniform(min_radius, available_radius + 1)
rotation = random.uniform(-np.pi, np.pi)
ellipse = draw_ellipse(
point[0],
point[1],
r_radius,
c_radius,
shape=image[:2],
rotation=rotation,
)
max_radius = math.ceil(max(r_radius, c_radius))
min_x = np.min(ellipse[0])
max_x = np.max(ellipse[0]) + 1
min_y = np.min(ellipse[1])
max_y = np.max(ellipse[1]) + 1
label = ('ellipse', ((min_x, max_x), (min_y, max_y)))
return ellipse, label
# Allows lookup by key as well as random selection.
SHAPE_GENERATORS = dict(
rectangle=_generate_rectangle_mask,
circle=_generate_circle_mask,
triangle=_generate_triangle_mask,
ellipse=_generate_ellipse_mask)
SHAPE_CHOICES = list(SHAPE_GENERATORS.values())
def _generate_random_colors(num_colors, num_channels, intensity_range, random):
"""Generate an array of random colors.
Parameters
----------
num_colors : int
Number of colors to generate.
num_channels : int
Number of elements representing color.
intensity_range : {tuple of tuples of ints, tuple of ints}, optional
The range of values to sample pixel values from. For grayscale images
the format is (min, max). For multichannel - ((min, max),) if the
ranges are equal across the channels, and
((min_0, max_0), ... (min_N, max_N)) if they differ.
random : np.random.RandomState
The random state to use for random sampling.
Raises
------
ValueError
When the `intensity_range` is not in the interval (0, 255).
Returns
-------
colors : array
An array of shape (num_colors, num_channels), where the values for
each channel are drawn from the corresponding `intensity_range`.
"""
if num_channels == 1:
intensity_range = (intensity_range, )
elif len(intensity_range) == 1:
intensity_range = intensity_range * num_channels
colors = [random.randint(r[0], r[1]+1, size=num_colors)
for r in intensity_range]
return np.transpose(colors)
def random_shapes(image_shape,
max_shapes,
min_shapes=1,
min_size=2,
max_size=None,
multichannel=True,
num_channels=3,
shape=None,
intensity_range=None,
allow_overlap=False,
num_trials=100,
random_seed=None):
"""Generate an image with random shapes, labeled with bounding boxes.
The image is populated with random shapes with random sizes, random
locations, and random colors, with or without overlap.
Shapes have random (row, col) starting coordinates and random sizes bounded
by `min_size` and `max_size`. It can occur that a randomly generated shape
will not fit the image at all. In that case, the algorithm will try again
with new starting coordinates a certain number of times. However, it also
means that some shapes may be skipped altogether. In that case, this
function will generate fewer shapes than requested.
Parameters
----------
image_shape : tuple
The number of rows and columns of the image to generate.
max_shapes : int
The maximum number of shapes to (attempt to) fit into the shape.
min_shapes : int, optional
The minimum number of shapes to (attempt to) fit into the shape.
min_size : int, optional
The minimum dimension of each shape to fit into the image.
max_size : int, optional
The maximum dimension of each shape to fit into the image.
multichannel : bool, optional
If True, the generated image has ``num_channels`` color channels,
otherwise generates grayscale image.
num_channels : int, optional
Number of channels in the generated image. If 1, generate monochrome
images, else color images with multiple channels. Ignored if
``multichannel`` is set to False.
shape : {rectangle, circle, triangle, ellipse, None} str, optional
The name of the shape to generate or `None` to pick random ones.
intensity_range : {tuple of tuples of uint8, tuple of uint8}, optional
The range of values to sample pixel values from. For grayscale images
the format is (min, max). For multichannel - ((min, max),) if the
ranges are equal across the channels, and ((min_0, max_0), ... (min_N, max_N))
if they differ. As the function supports generation of uint8 arrays only,
the maximum range is (0, 255). If None, set to (0, 254) for each
channel reserving color of intensity = 255 for background.
allow_overlap : bool, optional
If `True`, allow shapes to overlap.
num_trials : int, optional
How often to attempt to fit a shape into the image before skipping it.
random_seed : int, optional
Seed to initialize the random number generator.
If `None`, a random seed from the operating system is used.
Returns
-------
image : uint8 array
An image with the fitted shapes.
labels : list
A list of labels, one per shape in the image. Each label is a
(category, ((r0, r1), (c0, c1))) tuple specifying the category and
bounding box coordinates of the shape.
Examples
--------
>>> import skimage.draw
>>> image, labels = skimage.draw.random_shapes((32, 32), max_shapes=3)
>>> image # doctest: +SKIP
array([
[[255, 255, 255],
[255, 255, 255],
[255, 255, 255],
...,
[255, 255, 255],
[255, 255, 255],
[255, 255, 255]]], dtype=uint8)
>>> labels # doctest: +SKIP
[('circle', ((22, 18), (25, 21))),
('triangle', ((5, 6), (13, 13)))]
"""
if min_size > image_shape[0] or min_size > image_shape[1]:
raise ValueError('Minimum dimension must be less than ncols and nrows')
max_size = max_size or max(image_shape[0], image_shape[1])
if not multichannel:
num_channels = 1
if intensity_range is None:
intensity_range = (0, 254) if num_channels == 1 else ((0, 254), )
else:
tmp = (intensity_range, ) if num_channels == 1 else intensity_range
for intensity_pair in tmp:
for intensity in intensity_pair:
if not (0 <= intensity <= 255):
msg = 'Intensity range must lie within (0, 255) interval'
raise ValueError(msg)
random = np.random.RandomState(random_seed)
user_shape = shape
image_shape = (image_shape[0], image_shape[1], num_channels)
image = np.full(image_shape, 255, dtype=np.uint8)
filled = np.zeros(image_shape, dtype=bool)
labels = []
num_shapes = random.randint(min_shapes, max_shapes + 1)
colors = _generate_random_colors(num_shapes, num_channels,
intensity_range, random)
for shape_idx in range(num_shapes):
if user_shape is None:
shape_generator = random.choice(SHAPE_CHOICES)
else:
shape_generator = SHAPE_GENERATORS[user_shape]
shape = (min_size, max_size)
for _ in range(num_trials):
# Pick start coordinates.
column = random.randint(image_shape[1])
row = random.randint(image_shape[0])
point = (row, column)
try:
indices, label = shape_generator(point, image_shape, shape,
random)
except ArithmeticError:
# Couldn't fit the shape, skip it.
continue
# Check if there is an overlap where the mask is nonzero.
if allow_overlap or not filled[indices].any():
image[indices] = colors[shape_idx]
filled[indices] = True
labels.append(label)
break
else:
warn('Could not fit any shapes to image, '
'consider reducing the minimum dimension')
if not multichannel:
image = np.squeeze(image, axis=2)
return image, labels