Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/sklearn/utils/_mocking.py

167 lines
4.7 KiB
Python
Raw Permalink Normal View History

2020-11-12 16:05:57 +00:00
import numpy as np
from ..base import BaseEstimator, ClassifierMixin
from .validation import _num_samples, check_array
class ArraySlicingWrapper:
"""
Parameters
----------
array
"""
def __init__(self, array):
self.array = array
def __getitem__(self, aslice):
return MockDataFrame(self.array[aslice])
class MockDataFrame:
"""
Parameters
----------
array
"""
# have shape and length but don't support indexing.
def __init__(self, array):
self.array = array
self.values = array
self.shape = array.shape
self.ndim = array.ndim
# ugly hack to make iloc work.
self.iloc = ArraySlicingWrapper(array)
def __len__(self):
return len(self.array)
def __array__(self, dtype=None):
# Pandas data frames also are array-like: we want to make sure that
# input validation in cross-validation does not try to call that
# method.
return self.array
def __eq__(self, other):
return MockDataFrame(self.array == other.array)
def __ne__(self, other):
return not self == other
class CheckingClassifier(ClassifierMixin, BaseEstimator):
"""Dummy classifier to test pipelining and meta-estimators.
Checks some property of X and y in fit / predict.
This allows testing whether pipelines / cross-validation or metaestimators
changed the input.
Parameters
----------
check_y
check_X
foo_param
expected_fit_params
Attributes
----------
classes_
"""
def __init__(self, check_y=None, check_X=None, foo_param=0,
expected_fit_params=None):
self.check_y = check_y
self.check_X = check_X
self.foo_param = foo_param
self.expected_fit_params = expected_fit_params
def fit(self, X, y, **fit_params):
"""
Fit classifier
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training vector, where n_samples is the number of samples and
n_features is the number of features.
y : array-like of shape (n_samples, n_output) or (n_samples,), optional
Target relative to X for classification or regression;
None for unsupervised learning.
**fit_params : dict of string -> object
Parameters passed to the ``fit`` method of the estimator
"""
assert len(X) == len(y)
if self.check_X is not None:
assert self.check_X(X)
if self.check_y is not None:
assert self.check_y(y)
self.n_features_in_ = len(X)
self.classes_ = np.unique(check_array(y, ensure_2d=False,
allow_nd=True))
if self.expected_fit_params:
missing = set(self.expected_fit_params) - set(fit_params)
assert len(missing) == 0, 'Expected fit parameter(s) %s not ' \
'seen.' % list(missing)
for key, value in fit_params.items():
assert len(value) == len(X), (
'Fit parameter %s has length %d; '
'expected %d.'
% (key, len(value), len(X)))
return self
def predict(self, T):
"""
Parameters
----------
T : indexable, length n_samples
"""
if self.check_X is not None:
assert self.check_X(T)
return self.classes_[np.zeros(_num_samples(T), dtype=np.int)]
def score(self, X=None, Y=None):
"""
Parameters
----------
X : array-like of shape (n_samples, n_features)
Input data, where n_samples is the number of samples and
n_features is the number of features.
Y : array-like of shape (n_samples, n_output) or (n_samples,), optional
Target relative to X for classification or regression;
None for unsupervised learning.
"""
if self.foo_param > 1:
score = 1.
else:
score = 0.
return score
def _more_tags(self):
return {'_skip_test': True, 'X_types': ['1dlabel']}
class NoSampleWeightWrapper(BaseEstimator):
"""Wrap estimator which will not expose `sample_weight`.
Parameters
----------
est : estimator, default=None
The estimator to wrap.
"""
def __init__(self, est=None):
self.est = est
def fit(self, X, y):
return self.est.fit(X, y)
def predict(self, X):
return self.est.predict(X)
def predict_proba(self, X):
return self.est.predict_proba(X)
def _more_tags(self):
return {'_skip_test': True}