Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/sklearn/cluster/_kmeans.py

1917 lines
73 KiB
Python
Raw Permalink Normal View History

2020-11-12 16:05:57 +00:00
"""K-means clustering"""
# Authors: Gael Varoquaux <gael.varoquaux@normalesup.org>
# Thomas Rueckstiess <ruecksti@in.tum.de>
# James Bergstra <james.bergstra@umontreal.ca>
# Jan Schlueter <scikit-learn@jan-schlueter.de>
# Nelle Varoquaux
# Peter Prettenhofer <peter.prettenhofer@gmail.com>
# Olivier Grisel <olivier.grisel@ensta.org>
# Mathieu Blondel <mathieu@mblondel.org>
# Robert Layton <robertlayton@gmail.com>
# License: BSD 3 clause
import warnings
import numpy as np
import scipy.sparse as sp
from threadpoolctl import threadpool_limits
from ..base import BaseEstimator, ClusterMixin, TransformerMixin
from ..metrics.pairwise import euclidean_distances
from ..utils.extmath import row_norms, stable_cumsum
from ..utils.sparsefuncs_fast import assign_rows_csr
from ..utils.sparsefuncs import mean_variance_axis
from ..utils.validation import _deprecate_positional_args
from ..utils import check_array
from ..utils import gen_batches
from ..utils import check_random_state
from ..utils.validation import check_is_fitted, _check_sample_weight
from ..utils._openmp_helpers import _openmp_effective_n_threads
from ..exceptions import ConvergenceWarning
from ._k_means_fast import _inertia_dense
from ._k_means_fast import _inertia_sparse
from ._k_means_fast import _mini_batch_update_csr
from ._k_means_lloyd import lloyd_iter_chunked_dense
from ._k_means_lloyd import lloyd_iter_chunked_sparse
from ._k_means_elkan import init_bounds_dense
from ._k_means_elkan import init_bounds_sparse
from ._k_means_elkan import elkan_iter_chunked_dense
from ._k_means_elkan import elkan_iter_chunked_sparse
###############################################################################
# Initialization heuristic
def _k_init(X, n_clusters, x_squared_norms, random_state, n_local_trials=None):
"""Init n_clusters seeds according to k-means++
Parameters
----------
X : {ndarray, sparse matrix} of shape (n_samples, n_features)
The data to pick seeds for. To avoid memory copy, the input data
should be double precision (dtype=np.float64).
n_clusters : int
The number of seeds to choose
x_squared_norms : ndarray of shape (n_samples,)
Squared Euclidean norm of each data point.
random_state : RandomState instance
The generator used to initialize the centers.
See :term:`Glossary <random_state>`.
n_local_trials : int, default=None
The number of seeding trials for each center (except the first),
of which the one reducing inertia the most is greedily chosen.
Set to None to make the number of trials depend logarithmically
on the number of seeds (2+log(k)); this is the default.
Notes
-----
Selects initial cluster centers for k-mean clustering in a smart way
to speed up convergence. see: Arthur, D. and Vassilvitskii, S.
"k-means++: the advantages of careful seeding". ACM-SIAM symposium
on Discrete algorithms. 2007
Version ported from http://www.stanford.edu/~darthur/kMeansppTest.zip,
which is the implementation used in the aforementioned paper.
"""
n_samples, n_features = X.shape
centers = np.empty((n_clusters, n_features), dtype=X.dtype)
assert x_squared_norms is not None, 'x_squared_norms None in _k_init'
# Set the number of local seeding trials if none is given
if n_local_trials is None:
# This is what Arthur/Vassilvitskii tried, but did not report
# specific results for other than mentioning in the conclusion
# that it helped.
n_local_trials = 2 + int(np.log(n_clusters))
# Pick first center randomly
center_id = random_state.randint(n_samples)
if sp.issparse(X):
centers[0] = X[center_id].toarray()
else:
centers[0] = X[center_id]
# Initialize list of closest distances and calculate current potential
closest_dist_sq = euclidean_distances(
centers[0, np.newaxis], X, Y_norm_squared=x_squared_norms,
squared=True)
current_pot = closest_dist_sq.sum()
# Pick the remaining n_clusters-1 points
for c in range(1, n_clusters):
# Choose center candidates by sampling with probability proportional
# to the squared distance to the closest existing center
rand_vals = random_state.random_sample(n_local_trials) * current_pot
candidate_ids = np.searchsorted(stable_cumsum(closest_dist_sq),
rand_vals)
# XXX: numerical imprecision can result in a candidate_id out of range
np.clip(candidate_ids, None, closest_dist_sq.size - 1,
out=candidate_ids)
# Compute distances to center candidates
distance_to_candidates = euclidean_distances(
X[candidate_ids], X, Y_norm_squared=x_squared_norms, squared=True)
# update closest distances squared and potential for each candidate
np.minimum(closest_dist_sq, distance_to_candidates,
out=distance_to_candidates)
candidates_pot = distance_to_candidates.sum(axis=1)
# Decide which candidate is the best
best_candidate = np.argmin(candidates_pot)
current_pot = candidates_pot[best_candidate]
closest_dist_sq = distance_to_candidates[best_candidate]
best_candidate = candidate_ids[best_candidate]
# Permanently add best center candidate found in local tries
if sp.issparse(X):
centers[c] = X[best_candidate].toarray()
else:
centers[c] = X[best_candidate]
return centers
###############################################################################
# K-means batch estimation by EM (expectation maximization)
def _validate_center_shape(X, n_centers, centers):
"""Check if centers is compatible with X and n_centers"""
if centers.shape[0] != n_centers:
raise ValueError(
f"The shape of the initial centers {centers.shape} does not "
f"match the number of clusters {n_centers}.")
if centers.shape[1] != X.shape[1]:
raise ValueError(
f"The shape of the initial centers {centers.shape} does not "
f"match the number of features of the data {X.shape[1]}.")
def _tolerance(X, tol):
"""Return a tolerance which is independent of the dataset"""
if tol == 0:
return 0
if sp.issparse(X):
variances = mean_variance_axis(X, axis=0)[1]
else:
variances = np.var(X, axis=0)
return np.mean(variances) * tol
@_deprecate_positional_args
def k_means(X, n_clusters, *, sample_weight=None, init='k-means++',
precompute_distances='deprecated', n_init=10, max_iter=300,
verbose=False, tol=1e-4, random_state=None, copy_x=True,
n_jobs='deprecated', algorithm="auto", return_n_iter=False):
"""K-means clustering algorithm.
Read more in the :ref:`User Guide <k_means>`.
Parameters
----------
X : {array-like, sparse} matrix of shape (n_samples, n_features)
The observations to cluster. It must be noted that the data
will be converted to C ordering, which will cause a memory copy
if the given data is not C-contiguous.
n_clusters : int
The number of clusters to form as well as the number of
centroids to generate.
sample_weight : array-like of shape (n_samples,), default=None
The weights for each observation in X. If None, all observations
are assigned equal weight
init : {'k-means++', 'random', ndarray, callable}, default='k-means++'
Method for initialization:
'k-means++' : selects initial cluster centers for k-mean
clustering in a smart way to speed up convergence. See section
Notes in k_init for more details.
'random': choose `n_clusters` observations (rows) at random from data
for the initial centroids.
If an ndarray is passed, it should be of shape (n_clusters, n_features)
and gives the initial centers.
If a callable is passed, it should take arguments X, n_clusters and a
random state and return an initialization.
precompute_distances : {'auto', True, False}
Precompute distances (faster but takes more memory).
'auto' : do not precompute distances if n_samples * n_clusters > 12
million. This corresponds to about 100MB overhead per job using
double precision.
True : always precompute distances
False : never precompute distances
.. deprecated:: 0.23
'precompute_distances' was deprecated in version 0.23 and will be
removed in 0.25. It has no effect.
n_init : int, default=10
Number of time the k-means algorithm will be run with different
centroid seeds. The final results will be the best output of
n_init consecutive runs in terms of inertia.
max_iter : int, default=300
Maximum number of iterations of the k-means algorithm to run.
verbose : bool, default=False
Verbosity mode.
tol : float, default=1e-4
Relative tolerance with regards to Frobenius norm of the difference
in the cluster centers of two consecutive iterations to declare
convergence.
random_state : int, RandomState instance, default=None
Determines random number generation for centroid initialization. Use
an int to make the randomness deterministic.
See :term:`Glossary <random_state>`.
copy_x : bool, default=True
When pre-computing distances it is more numerically accurate to center
the data first. If copy_x is True (default), then the original data is
not modified. If False, the original data is modified, and put back
before the function returns, but small numerical differences may be
introduced by subtracting and then adding the data mean. Note that if
the original data is not C-contiguous, a copy will be made even if
copy_x is False. If the original data is sparse, but not in CSR format,
a copy will be made even if copy_x is False.
n_jobs : int, default=None
The number of OpenMP threads to use for the computation. Parallelism is
sample-wise on the main cython loop which assigns each sample to its
closest center.
``None`` or ``-1`` means using all processors.
.. deprecated:: 0.23
``n_jobs`` was deprecated in version 0.23 and will be removed in
0.25.
algorithm : {"auto", "full", "elkan"}, default="auto"
K-means algorithm to use. The classical EM-style algorithm is "full".
The "elkan" variation is more efficient on data with well-defined
clusters, by using the triangle inequality. However it's more memory
intensive due to the allocation of an extra array of shape
(n_samples, n_clusters).
For now "auto" (kept for backward compatibiliy) chooses "elkan" but it
might change in the future for a better heuristic.
return_n_iter : bool, default=False
Whether or not to return the number of iterations.
Returns
-------
centroid : ndarray of shape (n_clusters, n_features)
Centroids found at the last iteration of k-means.
label : ndarray of shape (n_samples,)
label[i] is the code or index of the centroid the
i'th observation is closest to.
inertia : float
The final value of the inertia criterion (sum of squared distances to
the closest centroid for all observations in the training set).
best_n_iter : int
Number of iterations corresponding to the best results.
Returned only if `return_n_iter` is set to True.
"""
est = KMeans(
n_clusters=n_clusters, init=init, n_init=n_init, max_iter=max_iter,
verbose=verbose, precompute_distances=precompute_distances, tol=tol,
random_state=random_state, copy_x=copy_x, n_jobs=n_jobs,
algorithm=algorithm
).fit(X, sample_weight=sample_weight)
if return_n_iter:
return est.cluster_centers_, est.labels_, est.inertia_, est.n_iter_
else:
return est.cluster_centers_, est.labels_, est.inertia_
def _kmeans_single_elkan(X, sample_weight, n_clusters, max_iter=300,
init='k-means++', verbose=False, x_squared_norms=None,
random_state=None, tol=1e-4, n_threads=1):
"""A single run of k-means lloyd, assumes preparation completed prior.
Parameters
----------
X : {ndarray, sparse matrix} of shape (n_samples, n_features)
The observations to cluster. If sparse matrix, must be in CSR format.
sample_weight : array-like of shape (n_samples,)
The weights for each observation in X.
n_clusters : int
The number of clusters to form as well as the number of
centroids to generate.
max_iter : int, default=300
Maximum number of iterations of the k-means algorithm to run.
init : {'k-means++', 'random', ndarray, callable}, default='k-means++'
Method for initialization:
'k-means++' : selects initial cluster centers for k-mean
clustering in a smart way to speed up convergence. See section
Notes in k_init for more details.
'random': choose `n_clusters` observations (rows) at random from data
for the initial centroids.
If an ndarray is passed, it should be of shape (n_clusters, n_features)
and gives the initial centers.
If a callable is passed, it should take arguments X, n_clusters and a
random state and return an initialization.
verbose : bool, default=False
Verbosity mode
x_squared_norms : array-like, default=None
Precomputed x_squared_norms.
random_state : int, RandomState instance, default=None
Determines random number generation for centroid initialization. Use
an int to make the randomness deterministic.
See :term:`Glossary <random_state>`.
tol : float, default=1e-4
Relative tolerance with regards to Frobenius norm of the difference
in the cluster centers of two consecutive iterations to declare
convergence.
It's not advised to set `tol=0` since convergence might never be
declared due to rounding errors. Use a very small number instead.
n_threads : int, default=1
The number of OpenMP threads to use for the computation. Parallelism is
sample-wise on the main cython loop which assigns each sample to its
closest center.
Returns
-------
centroid : ndarray of shape (n_clusters, n_features)
Centroids found at the last iteration of k-means.
label : ndarray of shape (n_samples,)
label[i] is the code or index of the centroid the
i'th observation is closest to.
inertia : float
The final value of the inertia criterion (sum of squared distances to
the closest centroid for all observations in the training set).
n_iter : int
Number of iterations run.
"""
random_state = check_random_state(random_state)
sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)
# init
centers = _init_centroids(X, n_clusters, init, random_state=random_state,
x_squared_norms=x_squared_norms)
if verbose:
print('Initialization complete')
n_samples = X.shape[0]
centers_new = np.zeros_like(centers)
weight_in_clusters = np.zeros(n_clusters, dtype=X.dtype)
labels = np.full(n_samples, -1, dtype=np.int32)
labels_old = labels.copy()
center_half_distances = euclidean_distances(centers) / 2
distance_next_center = np.partition(np.asarray(center_half_distances),
kth=1, axis=0)[1]
upper_bounds = np.zeros(n_samples, dtype=X.dtype)
lower_bounds = np.zeros((n_samples, n_clusters), dtype=X.dtype)
center_shift = np.zeros(n_clusters, dtype=X.dtype)
if sp.issparse(X):
init_bounds = init_bounds_sparse
elkan_iter = elkan_iter_chunked_sparse
_inertia = _inertia_sparse
else:
init_bounds = init_bounds_dense
elkan_iter = elkan_iter_chunked_dense
_inertia = _inertia_dense
init_bounds(X, centers, center_half_distances,
labels, upper_bounds, lower_bounds)
strict_convergence = False
for i in range(max_iter):
elkan_iter(X, sample_weight, centers, centers_new,
weight_in_clusters, center_half_distances,
distance_next_center, upper_bounds, lower_bounds,
labels, center_shift, n_threads)
# compute new pairwise distances between centers and closest other
# center of each center for next iterations
center_half_distances = euclidean_distances(centers_new) / 2
distance_next_center = np.partition(
np.asarray(center_half_distances), kth=1, axis=0)[1]
if verbose:
inertia = _inertia(X, sample_weight, centers, labels)
print("Iteration {0}, inertia {1}" .format(i, inertia))
if np.array_equal(labels, labels_old):
# First check the labels for strict convergence.
if verbose:
print(f"Converged at iteration {i}: strict convergence.")
strict_convergence = True
break
else:
# No strict convergence, check for tol based convergence.
center_shift_tot = (center_shift**2).sum()
if center_shift_tot <= tol:
if verbose:
print(f"Converged at iteration {i}: center shift "
f"{center_shift_tot} within tolerance {tol}.")
break
centers, centers_new = centers_new, centers
labels_old[:] = labels
if not strict_convergence:
# rerun E-step so that predicted labels match cluster centers
elkan_iter(X, sample_weight, centers, centers, weight_in_clusters,
center_half_distances, distance_next_center,
upper_bounds, lower_bounds, labels, center_shift,
n_threads, update_centers=False)
inertia = _inertia(X, sample_weight, centers, labels)
return labels, inertia, centers, i + 1
def _kmeans_single_lloyd(X, sample_weight, n_clusters, max_iter=300,
init='k-means++', verbose=False, x_squared_norms=None,
random_state=None, tol=1e-4, n_threads=1):
"""A single run of k-means lloyd, assumes preparation completed prior.
Parameters
----------
X : {ndarray, sparse matrix} of shape (n_samples, n_features)
The observations to cluster. If sparse matrix, must be in CSR format.
sample_weight : ndarray of shape (n_samples,)
The weights for each observation in X.
n_clusters : int
The number of clusters to form as well as the number of
centroids to generate.
max_iter : int, default=300
Maximum number of iterations of the k-means algorithm to run.
init : {'k-means++', 'random', ndarray, callable}, default='k-means++'
Method for initialization:
'k-means++' : selects initial cluster centers for k-mean
clustering in a smart way to speed up convergence. See section
Notes in k_init for more details.
'random': choose `n_clusters` observations (rows) at random from data
for the initial centroids.
If an ndarray is passed, it should be of shape (n_clusters, n_features)
and gives the initial centers.
If a callable is passed, it should take arguments X, n_clusters and a
random state and return an initialization.
verbose : bool, default=False
Verbosity mode
x_squared_norms : ndarray of shape(n_samples,), default=None
Precomputed x_squared_norms.
random_state : int, RandomState instance or None, default=None
Determines random number generation for centroid initialization. Use
an int to make the randomness deterministic.
See :term:`Glossary <random_state>`.
tol : float, default=1e-4
Relative tolerance with regards to Frobenius norm of the difference
in the cluster centers of two consecutive iterations to declare
convergence.
It's not advised to set `tol=0` since convergence might never be
declared due to rounding errors. Use a very small number instead.
n_threads : int, default=1
The number of OpenMP threads to use for the computation. Parallelism is
sample-wise on the main cython loop which assigns each sample to its
closest center.
Returns
-------
centroid : ndarray of shape (n_clusters, n_features)
Centroids found at the last iteration of k-means.
label : ndarray of shape (n_samples,)
label[i] is the code or index of the centroid the
i'th observation is closest to.
inertia : float
The final value of the inertia criterion (sum of squared distances to
the closest centroid for all observations in the training set).
n_iter : int
Number of iterations run.
"""
random_state = check_random_state(random_state)
sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)
# init
centers = _init_centroids(X, n_clusters, init, random_state=random_state,
x_squared_norms=x_squared_norms)
if verbose:
print("Initialization complete")
centers_new = np.zeros_like(centers)
labels = np.full(X.shape[0], -1, dtype=np.int32)
labels_old = labels.copy()
weight_in_clusters = np.zeros(n_clusters, dtype=X.dtype)
center_shift = np.zeros(n_clusters, dtype=X.dtype)
if sp.issparse(X):
lloyd_iter = lloyd_iter_chunked_sparse
_inertia = _inertia_sparse
else:
lloyd_iter = lloyd_iter_chunked_dense
_inertia = _inertia_dense
strict_convergence = False
# Threadpoolctl context to limit the number of threads in second level of
# nested parallelism (i.e. BLAS) to avoid oversubsciption.
with threadpool_limits(limits=1, user_api="blas"):
for i in range(max_iter):
lloyd_iter(X, sample_weight, x_squared_norms, centers, centers_new,
weight_in_clusters, labels, center_shift, n_threads)
if verbose:
inertia = _inertia(X, sample_weight, centers, labels)
print("Iteration {0}, inertia {1}" .format(i, inertia))
if np.array_equal(labels, labels_old):
# First check the labels for strict convergence.
if verbose:
print(f"Converged at iteration {i}: strict convergence.")
strict_convergence = True
break
else:
# No strict convergence, check for tol based convergence.
center_shift_tot = (center_shift**2).sum()
if center_shift_tot <= tol:
if verbose:
print(f"Converged at iteration {i}: center shift "
f"{center_shift_tot} within tolerance {tol}.")
break
centers, centers_new = centers_new, centers
labels_old[:] = labels
if not strict_convergence:
# rerun E-step so that predicted labels match cluster centers
lloyd_iter(X, sample_weight, x_squared_norms, centers, centers,
weight_in_clusters, labels, center_shift, n_threads,
update_centers=False)
inertia = _inertia(X, sample_weight, centers, labels)
return labels, inertia, centers, i + 1
def _labels_inertia(X, sample_weight, x_squared_norms, centers,
n_threads=None):
"""E step of the K-means EM algorithm.
Compute the labels and the inertia of the given samples and centers.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input samples to assign to the labels. If sparse matrix, must be in
CSR format.
sample_weight : array-like of shape (n_samples,)
The weights for each observation in X.
x_squared_norms : ndarray of shape (n_samples,)
Precomputed squared euclidean norm of each data point, to speed up
computations.
centers : ndarray, shape (n_clusters, n_features)
The cluster centers.
n_threads : int, default=None
The number of OpenMP threads to use for the computation. Parallelism is
sample-wise on the main cython loop which assigns each sample to its
closest center.
Returns
-------
labels : ndarray of shape (n_samples,)
The resulting assignment
inertia : float
Sum of squared distances of samples to their closest cluster center.
"""
n_samples = X.shape[0]
n_clusters = centers.shape[0]
n_threads = _openmp_effective_n_threads(n_threads)
sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)
labels = np.full(n_samples, -1, dtype=np.int32)
weight_in_clusters = np.zeros(n_clusters, dtype=centers.dtype)
center_shift = np.zeros_like(weight_in_clusters)
if sp.issparse(X):
_labels = lloyd_iter_chunked_sparse
_inertia = _inertia_sparse
else:
_labels = lloyd_iter_chunked_dense
_inertia = _inertia_dense
_labels(X, sample_weight, x_squared_norms, centers, centers,
weight_in_clusters, labels, center_shift, n_threads,
update_centers=False)
inertia = _inertia(X, sample_weight, centers, labels)
return labels, inertia
def _init_centroids(X, n_clusters=8, init="k-means++", random_state=None,
x_squared_norms=None, init_size=None):
"""Compute the initial centroids
Parameters
----------
X : {ndarray, spare matrix} of shape (n_samples, n_features)
The input samples.
n_clusters : int, default=8
number of centroids.
init : {'k-means++', 'random', ndarray, callable}, default="k-means++"
Method for initialization.
random_state : int, RandomState instance, default=None
Determines random number generation for centroid initialization. Use
an int to make the randomness deterministic.
See :term:`Glossary <random_state>`.
x_squared_norms : ndarray of shape (n_samples,), default=None
Squared euclidean norm of each data point. Pass it if you have it at
hands already to avoid it being recomputed here. Default: None
init_size : int, default=None
Number of samples to randomly sample for speeding up the
initialization (sometimes at the expense of accuracy): the
only algorithm is initialized by running a batch KMeans on a
random subset of the data. This needs to be larger than k.
Returns
-------
centers : array of shape(k, n_features)
"""
random_state = check_random_state(random_state)
n_samples = X.shape[0]
if x_squared_norms is None:
x_squared_norms = row_norms(X, squared=True)
if init_size is not None and init_size < n_samples:
if init_size < n_clusters:
warnings.warn(
"init_size=%d should be larger than k=%d. "
"Setting it to 3*k" % (init_size, n_clusters),
RuntimeWarning, stacklevel=2)
init_size = 3 * n_clusters
init_indices = random_state.randint(0, n_samples, init_size)
X = X[init_indices]
x_squared_norms = x_squared_norms[init_indices]
n_samples = X.shape[0]
elif n_samples < n_clusters:
raise ValueError(
"n_samples={} should be larger than n_clusters={}"
.format(n_samples, n_clusters))
if isinstance(init, str) and init == 'k-means++':
centers = _k_init(X, n_clusters, random_state=random_state,
x_squared_norms=x_squared_norms)
elif isinstance(init, str) and init == 'random':
seeds = random_state.permutation(n_samples)[:n_clusters]
centers = X[seeds]
elif hasattr(init, '__array__'):
# ensure that the centers have the same dtype as X
# this is a requirement of fused types of cython
centers = np.array(init, dtype=X.dtype)
elif callable(init):
centers = init(X, n_clusters, random_state=random_state)
centers = np.asarray(centers, dtype=X.dtype)
else:
raise ValueError("the init parameter for the k-means should "
"be 'k-means++' or 'random' or an ndarray, "
"'%s' (type '%s') was passed." % (init, type(init)))
if sp.issparse(centers):
centers = centers.toarray()
_validate_center_shape(X, n_clusters, centers)
return centers
class KMeans(TransformerMixin, ClusterMixin, BaseEstimator):
"""K-Means clustering.
Read more in the :ref:`User Guide <k_means>`.
Parameters
----------
n_clusters : int, default=8
The number of clusters to form as well as the number of
centroids to generate.
init : {'k-means++', 'random', ndarray, callable}, default='k-means++'
Method for initialization:
'k-means++' : selects initial cluster centers for k-mean
clustering in a smart way to speed up convergence. See section
Notes in k_init for more details.
'random': choose `n_clusters` observations (rows) at random from data
for the initial centroids.
If an ndarray is passed, it should be of shape (n_clusters, n_features)
and gives the initial centers.
If a callable is passed, it should take arguments X, n_clusters and a
random state and return an initialization.
n_init : int, default=10
Number of time the k-means algorithm will be run with different
centroid seeds. The final results will be the best output of
n_init consecutive runs in terms of inertia.
max_iter : int, default=300
Maximum number of iterations of the k-means algorithm for a
single run.
tol : float, default=1e-4
Relative tolerance with regards to Frobenius norm of the difference
in the cluster centers of two consecutive iterations to declare
convergence.
precompute_distances : {'auto', True, False}, default='auto'
Precompute distances (faster but takes more memory).
'auto' : do not precompute distances if n_samples * n_clusters > 12
million. This corresponds to about 100MB overhead per job using
double precision.
True : always precompute distances.
False : never precompute distances.
.. deprecated:: 0.23
'precompute_distances' was deprecated in version 0.22 and will be
removed in 0.25. It has no effect.
verbose : int, default=0
Verbosity mode.
random_state : int, RandomState instance, default=None
Determines random number generation for centroid initialization. Use
an int to make the randomness deterministic.
See :term:`Glossary <random_state>`.
copy_x : bool, default=True
When pre-computing distances it is more numerically accurate to center
the data first. If copy_x is True (default), then the original data is
not modified. If False, the original data is modified, and put back
before the function returns, but small numerical differences may be
introduced by subtracting and then adding the data mean. Note that if
the original data is not C-contiguous, a copy will be made even if
copy_x is False. If the original data is sparse, but not in CSR format,
a copy will be made even if copy_x is False.
n_jobs : int, default=None
The number of OpenMP threads to use for the computation. Parallelism is
sample-wise on the main cython loop which assigns each sample to its
closest center.
``None`` or ``-1`` means using all processors.
.. deprecated:: 0.23
``n_jobs`` was deprecated in version 0.23 and will be removed in
0.25.
algorithm : {"auto", "full", "elkan"}, default="auto"
K-means algorithm to use. The classical EM-style algorithm is "full".
The "elkan" variation is more efficient on data with well-defined
clusters, by using the triangle inequality. However it's more memory
intensive due to the allocation of an extra array of shape
(n_samples, n_clusters).
For now "auto" (kept for backward compatibiliy) chooses "elkan" but it
might change in the future for a better heuristic.
.. versionchanged:: 0.18
Added Elkan algorithm
Attributes
----------
cluster_centers_ : ndarray of shape (n_clusters, n_features)
Coordinates of cluster centers. If the algorithm stops before fully
converging (see ``tol`` and ``max_iter``), these will not be
consistent with ``labels_``.
labels_ : ndarray of shape (n_samples,)
Labels of each point
inertia_ : float
Sum of squared distances of samples to their closest cluster center.
n_iter_ : int
Number of iterations run.
See also
--------
MiniBatchKMeans
Alternative online implementation that does incremental updates
of the centers positions using mini-batches.
For large scale learning (say n_samples > 10k) MiniBatchKMeans is
probably much faster than the default batch implementation.
Notes
-----
The k-means problem is solved using either Lloyd's or Elkan's algorithm.
The average complexity is given by O(k n T), were n is the number of
samples and T is the number of iteration.
The worst case complexity is given by O(n^(k+2/p)) with
n = n_samples, p = n_features. (D. Arthur and S. Vassilvitskii,
'How slow is the k-means method?' SoCG2006)
In practice, the k-means algorithm is very fast (one of the fastest
clustering algorithms available), but it falls in local minima. That's why
it can be useful to restart it several times.
If the algorithm stops before fully converging (because of ``tol`` or
``max_iter``), ``labels_`` and ``cluster_centers_`` will not be consistent,
i.e. the ``cluster_centers_`` will not be the means of the points in each
cluster. Also, the estimator will reassign ``labels_`` after the last
iteration to make ``labels_`` consistent with ``predict`` on the training
set.
Examples
--------
>>> from sklearn.cluster import KMeans
>>> import numpy as np
>>> X = np.array([[1, 2], [1, 4], [1, 0],
... [10, 2], [10, 4], [10, 0]])
>>> kmeans = KMeans(n_clusters=2, random_state=0).fit(X)
>>> kmeans.labels_
array([1, 1, 1, 0, 0, 0], dtype=int32)
>>> kmeans.predict([[0, 0], [12, 3]])
array([1, 0], dtype=int32)
>>> kmeans.cluster_centers_
array([[10., 2.],
[ 1., 2.]])
"""
@_deprecate_positional_args
def __init__(self, n_clusters=8, *, init='k-means++', n_init=10,
max_iter=300, tol=1e-4, precompute_distances='deprecated',
verbose=0, random_state=None, copy_x=True,
n_jobs='deprecated', algorithm='auto'):
self.n_clusters = n_clusters
self.init = init
self.max_iter = max_iter
self.tol = tol
self.precompute_distances = precompute_distances
self.n_init = n_init
self.verbose = verbose
self.random_state = random_state
self.copy_x = copy_x
self.n_jobs = n_jobs
self.algorithm = algorithm
def _check_params(self, X):
# precompute_distances
if self.precompute_distances != 'deprecated':
warnings.warn("'precompute_distances' was deprecated in version "
"0.23 and will be removed in 0.25. It has no "
"effect", FutureWarning)
# n_jobs
if self.n_jobs != 'deprecated':
warnings.warn("'n_jobs' was deprecated in version 0.23 and will be"
" removed in 0.25.", FutureWarning)
self._n_threads = self.n_jobs
else:
self._n_threads = None
self._n_threads = _openmp_effective_n_threads(self._n_threads)
# n_init
if self.n_init <= 0:
raise ValueError(
f"n_init should be > 0, got {self.n_init} instead.")
self._n_init = self.n_init
# max_iter
if self.max_iter <= 0:
raise ValueError(
f"max_iter should be > 0, got {self.max_iter} instead.")
# n_clusters
if X.shape[0] < self.n_clusters:
raise ValueError(f"n_samples={X.shape[0]} should be >= "
f"n_clusters={self.n_clusters}.")
# tol
self._tol = _tolerance(X, self.tol)
# algorithm
if self.algorithm not in ("auto", "full", "elkan"):
raise ValueError(f"Algorithm must be 'auto', 'full' or 'elkan', "
f"got {self.algorithm} instead.")
self._algorithm = self.algorithm
if self._algorithm == "auto":
self._algorithm = "full" if self.n_clusters == 1 else "elkan"
if self._algorithm == "elkan" and self.n_clusters == 1:
warnings.warn("algorithm='elkan' doesn't make sense for a single "
"cluster. Using 'full' instead.", RuntimeWarning)
self._algorithm = "full"
# init
if not (hasattr(self.init, '__array__') or callable(self.init)
or (isinstance(self.init, str)
and self.init in ["k-means++", "random"])):
raise ValueError(
f"init should be either 'k-means++', 'random', a ndarray or a "
f"callable, got '{self.init}' instead.")
if hasattr(self.init, '__array__') and self._n_init != 1:
warnings.warn(
f"Explicit initial center position passed: performing only"
f" one init in {self.__class__.__name__} instead of "
f"n_init={self._n_init}.", RuntimeWarning, stacklevel=2)
self._n_init = 1
def _check_test_data(self, X):
X = check_array(X, accept_sparse='csr', dtype=[np.float64, np.float32],
order='C', accept_large_sparse=False)
n_samples, n_features = X.shape
expected_n_features = self.cluster_centers_.shape[1]
if not n_features == expected_n_features:
raise ValueError(
f"Incorrect number of features. Got {n_features} features, "
f"expected {expected_n_features}.")
return X
def fit(self, X, y=None, sample_weight=None):
"""Compute k-means clustering.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Training instances to cluster. It must be noted that the data
will be converted to C ordering, which will cause a memory
copy if the given data is not C-contiguous.
If a sparse matrix is passed, a copy will be made if it's not in
CSR format.
y : Ignored
Not used, present here for API consistency by convention.
sample_weight : array-like of shape (n_samples,), default=None
The weights for each observation in X. If None, all observations
are assigned equal weight.
.. versionadded:: 0.20
Returns
-------
self
Fitted estimator.
"""
X = self._validate_data(X, accept_sparse='csr',
dtype=[np.float64, np.float32],
order='C', copy=self.copy_x,
accept_large_sparse=False)
self._check_params(X)
random_state = check_random_state(self.random_state)
# Validate init array
init = self.init
if hasattr(init, '__array__'):
init = check_array(init, dtype=X.dtype, copy=True, order='C')
_validate_center_shape(X, self.n_clusters, init)
# subtract of mean of x for more accurate distance computations
if not sp.issparse(X):
X_mean = X.mean(axis=0)
# The copy was already done above
X -= X_mean
if hasattr(init, '__array__'):
init -= X_mean
# precompute squared norms of data points
x_squared_norms = row_norms(X, squared=True)
if self._algorithm == "full":
kmeans_single = _kmeans_single_lloyd
else:
kmeans_single = _kmeans_single_elkan
best_labels, best_inertia, best_centers = None, None, None
# seeds for the initializations of the kmeans runs.
seeds = random_state.randint(np.iinfo(np.int32).max, size=self._n_init)
for seed in seeds:
# run a k-means once
labels, inertia, centers, n_iter_ = kmeans_single(
X, sample_weight, self.n_clusters, max_iter=self.max_iter,
init=init, verbose=self.verbose, tol=self._tol,
x_squared_norms=x_squared_norms, random_state=seed,
n_threads=self._n_threads)
# determine if these results are the best so far
if best_inertia is None or inertia < best_inertia:
best_labels = labels.copy()
best_centers = centers.copy()
best_inertia = inertia
best_n_iter = n_iter_
if not sp.issparse(X):
if not self.copy_x:
X += X_mean
best_centers += X_mean
distinct_clusters = len(set(best_labels))
if distinct_clusters < self.n_clusters:
warnings.warn(
"Number of distinct clusters ({}) found smaller than "
"n_clusters ({}). Possibly due to duplicate points "
"in X.".format(distinct_clusters, self.n_clusters),
ConvergenceWarning, stacklevel=2)
self.cluster_centers_ = best_centers
self.labels_ = best_labels
self.inertia_ = best_inertia
self.n_iter_ = best_n_iter
return self
def fit_predict(self, X, y=None, sample_weight=None):
"""Compute cluster centers and predict cluster index for each sample.
Convenience method; equivalent to calling fit(X) followed by
predict(X).
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
New data to transform.
y : Ignored
Not used, present here for API consistency by convention.
sample_weight : array-like of shape (n_samples,), default=None
The weights for each observation in X. If None, all observations
are assigned equal weight.
Returns
-------
labels : ndarray of shape (n_samples,)
Index of the cluster each sample belongs to.
"""
return self.fit(X, sample_weight=sample_weight).labels_
def fit_transform(self, X, y=None, sample_weight=None):
"""Compute clustering and transform X to cluster-distance space.
Equivalent to fit(X).transform(X), but more efficiently implemented.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
New data to transform.
y : Ignored
Not used, present here for API consistency by convention.
sample_weight : array-like of shape (n_samples,), default=None
The weights for each observation in X. If None, all observations
are assigned equal weight.
Returns
-------
X_new : array of shape (n_samples, n_clusters)
X transformed in the new space.
"""
# Currently, this just skips a copy of the data if it is not in
# np.array or CSR format already.
# XXX This skips _check_test_data, which may change the dtype;
# we should refactor the input validation.
return self.fit(X, sample_weight=sample_weight)._transform(X)
def transform(self, X):
"""Transform X to a cluster-distance space.
In the new space, each dimension is the distance to the cluster
centers. Note that even if X is sparse, the array returned by
`transform` will typically be dense.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
New data to transform.
Returns
-------
X_new : ndarray of shape (n_samples, n_clusters)
X transformed in the new space.
"""
check_is_fitted(self)
X = self._check_test_data(X)
return self._transform(X)
def _transform(self, X):
"""guts of transform method; no input validation"""
return euclidean_distances(X, self.cluster_centers_)
def predict(self, X, sample_weight=None):
"""Predict the closest cluster each sample in X belongs to.
In the vector quantization literature, `cluster_centers_` is called
the code book and each value returned by `predict` is the index of
the closest code in the code book.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
New data to predict.
sample_weight : array-like of shape (n_samples,), default=None
The weights for each observation in X. If None, all observations
are assigned equal weight.
Returns
-------
labels : ndarray of shape (n_samples,)
Index of the cluster each sample belongs to.
"""
check_is_fitted(self)
X = self._check_test_data(X)
x_squared_norms = row_norms(X, squared=True)
return _labels_inertia(X, sample_weight, x_squared_norms,
self.cluster_centers_, self._n_threads)[0]
def score(self, X, y=None, sample_weight=None):
"""Opposite of the value of X on the K-means objective.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
New data.
y : Ignored
Not used, present here for API consistency by convention.
sample_weight : array-like of shape (n_samples,), default=None
The weights for each observation in X. If None, all observations
are assigned equal weight.
Returns
-------
score : float
Opposite of the value of X on the K-means objective.
"""
check_is_fitted(self)
X = self._check_test_data(X)
x_squared_norms = row_norms(X, squared=True)
return -_labels_inertia(X, sample_weight, x_squared_norms,
self.cluster_centers_)[1]
def _mini_batch_step(X, sample_weight, x_squared_norms, centers, weight_sums,
old_center_buffer, compute_squared_diff,
distances, random_reassign=False,
random_state=None, reassignment_ratio=.01,
verbose=False):
"""Incremental update of the centers for the Minibatch K-Means algorithm.
Parameters
----------
X : array, shape (n_samples, n_features)
The original data array.
sample_weight : array-like, shape (n_samples,)
The weights for each observation in X.
x_squared_norms : array, shape (n_samples,)
Squared euclidean norm of each data point.
centers : array, shape (k, n_features)
The cluster centers. This array is MODIFIED IN PLACE
counts : array, shape (k,)
The vector in which we keep track of the numbers of elements in a
cluster. This array is MODIFIED IN PLACE
distances : array, dtype float, shape (n_samples), optional
If not None, should be a pre-allocated array that will be used to store
the distances of each sample to its closest center.
May not be None when random_reassign is True.
random_state : int, RandomState instance, default=None
Determines random number generation for centroid initialization and to
pick new clusters amongst observations with uniform probability. Use
an int to make the randomness deterministic.
See :term:`Glossary <random_state>`.
random_reassign : boolean, optional
If True, centers with very low counts are randomly reassigned
to observations.
reassignment_ratio : float, optional
Control the fraction of the maximum number of counts for a
center to be reassigned. A higher value means that low count
centers are more likely to be reassigned, which means that the
model will take longer to converge, but should converge in a
better clustering.
verbose : bool, optional, default False
Controls the verbosity.
compute_squared_diff : bool
If set to False, the squared diff computation is skipped.
old_center_buffer : int
Copy of old centers for monitoring convergence.
Returns
-------
inertia : float
Sum of squared distances of samples to their closest cluster center.
squared_diff : numpy array, shape (n_clusters,)
Squared distances between previous and updated cluster centers.
"""
# Perform label assignment to nearest centers
nearest_center, inertia = _labels_inertia(X, sample_weight,
x_squared_norms, centers)
if random_reassign and reassignment_ratio > 0:
random_state = check_random_state(random_state)
# Reassign clusters that have very low weight
to_reassign = weight_sums < reassignment_ratio * weight_sums.max()
# pick at most .5 * batch_size samples as new centers
if to_reassign.sum() > .5 * X.shape[0]:
indices_dont_reassign = \
np.argsort(weight_sums)[int(.5 * X.shape[0]):]
to_reassign[indices_dont_reassign] = False
n_reassigns = to_reassign.sum()
if n_reassigns:
# Pick new clusters amongst observations with uniform probability
new_centers = random_state.choice(X.shape[0], replace=False,
size=n_reassigns)
if verbose:
print("[MiniBatchKMeans] Reassigning %i cluster centers."
% n_reassigns)
if sp.issparse(X) and not sp.issparse(centers):
assign_rows_csr(
X, new_centers.astype(np.intp, copy=False),
np.where(to_reassign)[0].astype(np.intp, copy=False),
centers)
else:
centers[to_reassign] = X[new_centers]
# reset counts of reassigned centers, but don't reset them too small
# to avoid instant reassignment. This is a pretty dirty hack as it
# also modifies the learning rates.
weight_sums[to_reassign] = np.min(weight_sums[~to_reassign])
# implementation for the sparse CSR representation completely written in
# cython
if sp.issparse(X):
return inertia, _mini_batch_update_csr(
X, sample_weight, x_squared_norms, centers, weight_sums,
nearest_center, old_center_buffer, compute_squared_diff)
# dense variant in mostly numpy (not as memory efficient though)
k = centers.shape[0]
squared_diff = 0.0
for center_idx in range(k):
# find points from minibatch that are assigned to this center
center_mask = nearest_center == center_idx
wsum = sample_weight[center_mask].sum()
if wsum > 0:
if compute_squared_diff:
old_center_buffer[:] = centers[center_idx]
# inplace remove previous count scaling
centers[center_idx] *= weight_sums[center_idx]
# inplace sum with new points members of this cluster
centers[center_idx] += \
np.sum(X[center_mask] *
sample_weight[center_mask, np.newaxis], axis=0)
# update the count statistics for this center
weight_sums[center_idx] += wsum
# inplace rescale to compute mean of all points (old and new)
# Note: numpy >= 1.10 does not support '/=' for the following
# expression for a mixture of int and float (see numpy issue #6464)
centers[center_idx] = centers[center_idx] / weight_sums[center_idx]
# update the squared diff if necessary
if compute_squared_diff:
diff = centers[center_idx].ravel() - old_center_buffer.ravel()
squared_diff += np.dot(diff, diff)
return inertia, squared_diff
def _mini_batch_convergence(model, iteration_idx, n_iter, tol,
n_samples, centers_squared_diff, batch_inertia,
context, verbose=0):
"""Helper function to encapsulate the early stopping logic"""
# Normalize inertia to be able to compare values when
# batch_size changes
batch_inertia /= model.batch_size
centers_squared_diff /= model.batch_size
# Compute an Exponentially Weighted Average of the squared
# diff to monitor the convergence while discarding
# minibatch-local stochastic variability:
# https://en.wikipedia.org/wiki/Moving_average
ewa_diff = context.get('ewa_diff')
ewa_inertia = context.get('ewa_inertia')
if ewa_diff is None:
ewa_diff = centers_squared_diff
ewa_inertia = batch_inertia
else:
alpha = float(model.batch_size) * 2.0 / (n_samples + 1)
alpha = 1.0 if alpha > 1.0 else alpha
ewa_diff = ewa_diff * (1 - alpha) + centers_squared_diff * alpha
ewa_inertia = ewa_inertia * (1 - alpha) + batch_inertia * alpha
# Log progress to be able to monitor convergence
if verbose:
progress_msg = (
'Minibatch iteration %d/%d:'
' mean batch inertia: %f, ewa inertia: %f ' % (
iteration_idx + 1, n_iter, batch_inertia,
ewa_inertia))
print(progress_msg)
# Early stopping based on absolute tolerance on squared change of
# centers position (using EWA smoothing)
if tol > 0.0 and ewa_diff <= tol:
if verbose:
print('Converged (small centers change) at iteration %d/%d'
% (iteration_idx + 1, n_iter))
return True
# Early stopping heuristic due to lack of improvement on smoothed inertia
ewa_inertia_min = context.get('ewa_inertia_min')
no_improvement = context.get('no_improvement', 0)
if ewa_inertia_min is None or ewa_inertia < ewa_inertia_min:
no_improvement = 0
ewa_inertia_min = ewa_inertia
else:
no_improvement += 1
if (model.max_no_improvement is not None
and no_improvement >= model.max_no_improvement):
if verbose:
print('Converged (lack of improvement in inertia)'
' at iteration %d/%d'
% (iteration_idx + 1, n_iter))
return True
# update the convergence context to maintain state across successive calls:
context['ewa_diff'] = ewa_diff
context['ewa_inertia'] = ewa_inertia
context['ewa_inertia_min'] = ewa_inertia_min
context['no_improvement'] = no_improvement
return False
class MiniBatchKMeans(KMeans):
"""
Mini-Batch K-Means clustering.
Read more in the :ref:`User Guide <mini_batch_kmeans>`.
Parameters
----------
n_clusters : int, default=8
The number of clusters to form as well as the number of
centroids to generate.
init : {'k-means++', 'random'} or ndarray of shape \
(n_clusters, n_features), default='k-means++'
Method for initialization
'k-means++' : selects initial cluster centers for k-mean
clustering in a smart way to speed up convergence. See section
Notes in k_init for more details.
'random': choose k observations (rows) at random from data for
the initial centroids.
If an ndarray is passed, it should be of shape (n_clusters, n_features)
and gives the initial centers.
max_iter : int, default=100
Maximum number of iterations over the complete dataset before
stopping independently of any early stopping criterion heuristics.
batch_size : int, default=100
Size of the mini batches.
verbose : int, default=0
Verbosity mode.
compute_labels : bool, default=True
Compute label assignment and inertia for the complete dataset
once the minibatch optimization has converged in fit.
random_state : int, RandomState instance, default=None
Determines random number generation for centroid initialization and
random reassignment. Use an int to make the randomness deterministic.
See :term:`Glossary <random_state>`.
tol : float, default=0.0
Control early stopping based on the relative center changes as
measured by a smoothed, variance-normalized of the mean center
squared position changes. This early stopping heuristics is
closer to the one used for the batch variant of the algorithms
but induces a slight computational and memory overhead over the
inertia heuristic.
To disable convergence detection based on normalized center
change, set tol to 0.0 (default).
max_no_improvement : int, default=10
Control early stopping based on the consecutive number of mini
batches that does not yield an improvement on the smoothed inertia.
To disable convergence detection based on inertia, set
max_no_improvement to None.
init_size : int, default=None
Number of samples to randomly sample for speeding up the
initialization (sometimes at the expense of accuracy): the
only algorithm is initialized by running a batch KMeans on a
random subset of the data. This needs to be larger than n_clusters.
If `None`, `init_size= 3 * batch_size`.
n_init : int, default=3
Number of random initializations that are tried.
In contrast to KMeans, the algorithm is only run once, using the
best of the ``n_init`` initializations as measured by inertia.
reassignment_ratio : float, default=0.01
Control the fraction of the maximum number of counts for a
center to be reassigned. A higher value means that low count
centers are more easily reassigned, which means that the
model will take longer to converge, but should converge in a
better clustering.
Attributes
----------
cluster_centers_ : ndarray of shape (n_clusters, n_features)
Coordinates of cluster centers
labels_ : int
Labels of each point (if compute_labels is set to True).
inertia_ : float
The value of the inertia criterion associated with the chosen
partition (if compute_labels is set to True). The inertia is
defined as the sum of square distances of samples to their nearest
neighbor.
See Also
--------
KMeans
The classic implementation of the clustering method based on the
Lloyd's algorithm. It consumes the whole set of input data at each
iteration.
Notes
-----
See https://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf
Examples
--------
>>> from sklearn.cluster import MiniBatchKMeans
>>> import numpy as np
>>> X = np.array([[1, 2], [1, 4], [1, 0],
... [4, 2], [4, 0], [4, 4],
... [4, 5], [0, 1], [2, 2],
... [3, 2], [5, 5], [1, -1]])
>>> # manually fit on batches
>>> kmeans = MiniBatchKMeans(n_clusters=2,
... random_state=0,
... batch_size=6)
>>> kmeans = kmeans.partial_fit(X[0:6,:])
>>> kmeans = kmeans.partial_fit(X[6:12,:])
>>> kmeans.cluster_centers_
array([[2. , 1. ],
[3.5, 4.5]])
>>> kmeans.predict([[0, 0], [4, 4]])
array([0, 1], dtype=int32)
>>> # fit on the whole data
>>> kmeans = MiniBatchKMeans(n_clusters=2,
... random_state=0,
... batch_size=6,
... max_iter=10).fit(X)
>>> kmeans.cluster_centers_
array([[3.95918367, 2.40816327],
[1.12195122, 1.3902439 ]])
>>> kmeans.predict([[0, 0], [4, 4]])
array([1, 0], dtype=int32)
"""
@_deprecate_positional_args
def __init__(self, n_clusters=8, *, init='k-means++', max_iter=100,
batch_size=100, verbose=0, compute_labels=True,
random_state=None, tol=0.0, max_no_improvement=10,
init_size=None, n_init=3, reassignment_ratio=0.01):
super().__init__(
n_clusters=n_clusters, init=init, max_iter=max_iter,
verbose=verbose, random_state=random_state, tol=tol, n_init=n_init)
self.max_no_improvement = max_no_improvement
self.batch_size = batch_size
self.compute_labels = compute_labels
self.init_size = init_size
self.reassignment_ratio = reassignment_ratio
def _check_params(self, X):
super()._check_params(X)
# max_no_improvement
if self.max_no_improvement is not None and self.max_no_improvement < 0:
raise ValueError(
f"max_no_improvement should be >= 0, got "
f"{self.max_no_improvement} instead.")
# batch_size
if self.batch_size <= 0:
raise ValueError(
f"batch_size should be > 0, got {self.batch_size} instead.")
# init_size
if self.init_size is not None and self.init_size <= 0:
raise ValueError(
f"init_size should be > 0, got {self.init_size} instead.")
self._init_size = self.init_size
if self._init_size is None:
self._init_size = 3 * self.batch_size
if self._init_size < self.n_clusters:
self._init_size = 3 * self.n_clusters
elif self._init_size < self.n_clusters:
warnings.warn(
f"init_size={self._init_size} should be larger than "
f"n_clusters={self.n_clusters}. Setting it to "
f"min(3*n_clusters, n_samples)",
RuntimeWarning, stacklevel=2)
self._init_size = 3 * self.n_clusters
self._init_size = min(self._init_size, X.shape[0])
# FIXME: init_size_ will be deprecated and this line will be removed
self.init_size_ = self._init_size
# reassignment_ratio
if self.reassignment_ratio < 0:
raise ValueError(
f"reassignment_ratio should be >= 0, got "
f"{self.reassignment_ratio} instead.")
def fit(self, X, y=None, sample_weight=None):
"""Compute the centroids on X by chunking it into mini-batches.
Parameters
----------
X : array-like or sparse matrix, shape=(n_samples, n_features)
Training instances to cluster. It must be noted that the data
will be converted to C ordering, which will cause a memory copy
if the given data is not C-contiguous.
y : Ignored
Not used, present here for API consistency by convention.
sample_weight : array-like, shape (n_samples,), optional
The weights for each observation in X. If None, all observations
are assigned equal weight (default: None).
.. versionadded:: 0.20
Returns
-------
self
"""
X = self._validate_data(X, accept_sparse='csr',
dtype=[np.float64, np.float32],
order='C', accept_large_sparse=False)
self._check_params(X)
random_state = check_random_state(self.random_state)
sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)
# Validate init array
init = self.init
if hasattr(init, '__array__'):
init = check_array(init, dtype=X.dtype, copy=True, order='C')
_validate_center_shape(X, self.n_clusters, init)
n_samples, n_features = X.shape
x_squared_norms = row_norms(X, squared=True)
if self.tol > 0.0:
tol = _tolerance(X, self.tol)
# using tol-based early stopping needs the allocation of a
# dedicated before which can be expensive for high dim data:
# hence we allocate it outside of the main loop
old_center_buffer = np.zeros(n_features, dtype=X.dtype)
else:
tol = 0.0
# no need for the center buffer if tol-based early stopping is
# disabled
old_center_buffer = np.zeros(0, dtype=X.dtype)
distances = np.zeros(self.batch_size, dtype=X.dtype)
n_batches = int(np.ceil(float(n_samples) / self.batch_size))
n_iter = int(self.max_iter * n_batches)
validation_indices = random_state.randint(0, n_samples,
self._init_size)
X_valid = X[validation_indices]
sample_weight_valid = sample_weight[validation_indices]
x_squared_norms_valid = x_squared_norms[validation_indices]
# perform several inits with random sub-sets
best_inertia = None
for init_idx in range(self._n_init):
if self.verbose:
print("Init %d/%d with method: %s"
% (init_idx + 1, self._n_init, init))
weight_sums = np.zeros(self.n_clusters, dtype=sample_weight.dtype)
# TODO: once the `k_means` function works with sparse input we
# should refactor the following init to use it instead.
# Initialize the centers using only a fraction of the data as we
# expect n_samples to be very large when using MiniBatchKMeans
cluster_centers = _init_centroids(
X, self.n_clusters, init,
random_state=random_state,
x_squared_norms=x_squared_norms,
init_size=self._init_size)
# Compute the label assignment on the init dataset
_mini_batch_step(
X_valid, sample_weight_valid,
x_squared_norms[validation_indices], cluster_centers,
weight_sums, old_center_buffer, False, distances=None,
verbose=self.verbose)
# Keep only the best cluster centers across independent inits on
# the common validation set
_, inertia = _labels_inertia(X_valid, sample_weight_valid,
x_squared_norms_valid,
cluster_centers)
if self.verbose:
print("Inertia for init %d/%d: %f"
% (init_idx + 1, self._n_init, inertia))
if best_inertia is None or inertia < best_inertia:
self.cluster_centers_ = cluster_centers
self.counts_ = weight_sums
best_inertia = inertia
# Empty context to be used inplace by the convergence check routine
convergence_context = {}
# Perform the iterative optimization until the final convergence
# criterion
for iteration_idx in range(n_iter):
# Sample a minibatch from the full dataset
minibatch_indices = random_state.randint(
0, n_samples, self.batch_size)
# Perform the actual update step on the minibatch data
batch_inertia, centers_squared_diff = _mini_batch_step(
X[minibatch_indices], sample_weight[minibatch_indices],
x_squared_norms[minibatch_indices],
self.cluster_centers_, self.counts_,
old_center_buffer, tol > 0.0, distances=distances,
# Here we randomly choose whether to perform
# random reassignment: the choice is done as a function
# of the iteration index, and the minimum number of
# counts, in order to force this reassignment to happen
# every once in a while
random_reassign=((iteration_idx + 1)
% (10 + int(self.counts_.min())) == 0),
random_state=random_state,
reassignment_ratio=self.reassignment_ratio,
verbose=self.verbose)
# Monitor convergence and do early stopping if necessary
if _mini_batch_convergence(
self, iteration_idx, n_iter, tol, n_samples,
centers_squared_diff, batch_inertia, convergence_context,
verbose=self.verbose):
break
self.n_iter_ = iteration_idx + 1
if self.compute_labels:
self.labels_, self.inertia_ = \
self._labels_inertia_minibatch(X, sample_weight)
return self
def _labels_inertia_minibatch(self, X, sample_weight):
"""Compute labels and inertia using mini batches.
This is slightly slower than doing everything at once but preventes
memory errors / segfaults.
Parameters
----------
X : array-like, shape (n_samples, n_features)
Input data.
sample_weight : array-like, shape (n_samples,)
The weights for each observation in X.
Returns
-------
labels : array, shape (n_samples,)
Cluster labels for each point.
inertia : float
Sum of squared distances of points to nearest cluster.
"""
if self.verbose:
print('Computing label assignment and total inertia')
sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)
x_squared_norms = row_norms(X, squared=True)
slices = gen_batches(X.shape[0], self.batch_size)
results = [_labels_inertia(X[s], sample_weight[s], x_squared_norms[s],
self.cluster_centers_) for s in slices]
labels, inertia = zip(*results)
return np.hstack(labels), np.sum(inertia)
def partial_fit(self, X, y=None, sample_weight=None):
"""Update k means estimate on a single mini-batch X.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Coordinates of the data points to cluster. It must be noted that
X will be copied if it is not C-contiguous.
y : Ignored
Not used, present here for API consistency by convention.
sample_weight : array-like, shape (n_samples,), optional
The weights for each observation in X. If None, all observations
are assigned equal weight (default: None).
Returns
-------
self
"""
is_first_call_to_partial_fit = not hasattr(self, 'cluster_centers_')
X = self._validate_data(X, accept_sparse='csr',
dtype=[np.float64, np.float32],
order='C', accept_large_sparse=False,
reset=is_first_call_to_partial_fit)
self.random_state_ = getattr(self, "random_state_",
check_random_state(self.random_state))
sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)
x_squared_norms = row_norms(X, squared=True)
if is_first_call_to_partial_fit:
# this is the first call to partial_fit on this object
self._check_params(X)
# Validate init array
init = self.init
if hasattr(init, '__array__'):
init = check_array(init, dtype=X.dtype, copy=True, order='C')
_validate_center_shape(X, self.n_clusters, init)
# initialize the cluster centers
self.cluster_centers_ = _init_centroids(
X, self.n_clusters, init,
random_state=self.random_state_,
x_squared_norms=x_squared_norms, init_size=self.init_size)
self.counts_ = np.zeros(self.n_clusters,
dtype=sample_weight.dtype)
random_reassign = False
distances = None
else:
# The lower the minimum count is, the more we do random
# reassignment, however, we don't want to do random
# reassignment too often, to allow for building up counts
random_reassign = self.random_state_.randint(
10 * (1 + self.counts_.min())) == 0
distances = np.zeros(X.shape[0], dtype=X.dtype)
_mini_batch_step(X, sample_weight, x_squared_norms,
self.cluster_centers_, self.counts_,
np.zeros(0, dtype=X.dtype), 0,
random_reassign=random_reassign, distances=distances,
random_state=self.random_state_,
reassignment_ratio=self.reassignment_ratio,
verbose=self.verbose)
if self.compute_labels:
self.labels_, self.inertia_ = _labels_inertia(
X, sample_weight, x_squared_norms, self.cluster_centers_)
return self
def predict(self, X, sample_weight=None):
"""Predict the closest cluster each sample in X belongs to.
In the vector quantization literature, `cluster_centers_` is called
the code book and each value returned by `predict` is the index of
the closest code in the code book.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
New data to predict.
sample_weight : array-like, shape (n_samples,), optional
The weights for each observation in X. If None, all observations
are assigned equal weight (default: None).
Returns
-------
labels : array, shape [n_samples,]
Index of the cluster each sample belongs to.
"""
check_is_fitted(self)
X = self._check_test_data(X)
return self._labels_inertia_minibatch(X, sample_weight)[0]