Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/skimage/restoration/_cycle_spin.py

146 lines
5.5 KiB
Python
Raw Permalink Normal View History

from itertools import product
import numpy as np
from .._shared.utils import warn
try:
import dask
dask_available = True
except ImportError:
dask_available = False
def _generate_shifts(ndim, multichannel, max_shifts, shift_steps=1):
"""Returns all combinations of shifts in n dimensions over the specified
max_shifts and step sizes.
Examples
--------
>>> s = list(_generate_shifts(2, False, max_shifts=(1, 2), shift_steps=1))
>>> print(s)
[(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)]
"""
mc = int(multichannel)
if np.isscalar(max_shifts):
max_shifts = (max_shifts, ) * (ndim - mc) + (0, ) * mc
elif multichannel and len(max_shifts) == ndim - 1:
max_shifts = tuple(max_shifts) + (0, )
elif len(max_shifts) != ndim:
raise ValueError("max_shifts should have length ndim")
if np.isscalar(shift_steps):
shift_steps = (shift_steps, ) * (ndim - mc) + (1, ) * mc
elif multichannel and len(shift_steps) == ndim - 1:
shift_steps = tuple(shift_steps) + (1, )
elif len(shift_steps) != ndim:
raise ValueError("max_shifts should have length ndim")
if any(s < 1 for s in shift_steps):
raise ValueError("shift_steps must all be >= 1")
if multichannel and max_shifts[-1] != 0:
raise ValueError(
"Multichannel cycle spinning should not have shifts along the "
"last axis.")
return product(*[range(0, s + 1, t) for
s, t in zip(max_shifts, shift_steps)])
def cycle_spin(x, func, max_shifts, shift_steps=1, num_workers=None,
multichannel=False, func_kw={}):
"""Cycle spinning (repeatedly apply func to shifted versions of x).
Parameters
----------
x : array-like
Data for input to ``func``.
func : function
A function to apply to circularly shifted versions of ``x``. Should
take ``x`` as its first argument. Any additional arguments can be
supplied via ``func_kw``.
max_shifts : int or tuple
If an integer, shifts in ``range(0, max_shifts+1)`` will be used along
each axis of ``x``. If a tuple, ``range(0, max_shifts[i]+1)`` will be
along axis i.
shift_steps : int or tuple, optional
The step size for the shifts applied along axis, i, are::
``range((0, max_shifts[i]+1, shift_steps[i]))``. If an integer is
provided, the same step size is used for all axes.
num_workers : int or None, optional
The number of parallel threads to use during cycle spinning. If set to
``None``, the full set of available cores are used.
multichannel : bool, optional
Whether to treat the final axis as channels (no cycle shifts are
performed over the channels axis).
func_kw : dict, optional
Additional keyword arguments to supply to ``func``.
Returns
-------
avg_y : np.ndarray
The output of ``func(x, **func_kw)`` averaged over all combinations of
the specified axis shifts.
Notes
-----
Cycle spinning was proposed as a way to approach shift-invariance via
performing several circular shifts of a shift-variant transform [1]_.
For a n-level discrete wavelet transforms, one may wish to perform all
shifts up to ``max_shifts = 2**n - 1``. In practice, much of the benefit
can often be realized with only a small number of shifts per axis.
For transforms such as the blockwise discrete cosine transform, one may
wish to evaluate shifts up to the block size used by the transform.
References
----------
.. [1] R.R. Coifman and D.L. Donoho. "Translation-Invariant De-Noising".
Wavelets and Statistics, Lecture Notes in Statistics, vol.103.
Springer, New York, 1995, pp.125-150.
:DOI:`10.1007/978-1-4612-2544-7_9`
Examples
--------
>>> import skimage.data
>>> from skimage import img_as_float
>>> from skimage.restoration import denoise_wavelet, cycle_spin
>>> img = img_as_float(skimage.data.camera())
>>> sigma = 0.1
>>> img = img + sigma * np.random.standard_normal(img.shape)
>>> denoised = cycle_spin(img, func=denoise_wavelet,
... max_shifts=3) # doctest: +SKIP
"""
x = np.asanyarray(x)
all_shifts = _generate_shifts(x.ndim, multichannel, max_shifts,
shift_steps)
all_shifts = list(all_shifts)
roll_axes = tuple(range(x.ndim))
def _run_one_shift(shift):
# shift, apply function, inverse shift
xs = np.roll(x, shift, axis=roll_axes)
tmp = func(xs, **func_kw)
return np.roll(tmp, tuple(-s for s in shift), axis=roll_axes)
if not dask_available and (num_workers is None or num_workers > 1):
num_workers = 1
warn('The optional dask dependency is not installed. '
'The number of workers is set to 1. To silence '
'this warning, install dask or explicitly set `num_workers=1` '
'when calling the `cycle_spin` function')
# compute a running average across the cycle shifts
if num_workers == 1:
# serial processing
mean = _run_one_shift(all_shifts[0])
for shift in all_shifts[1:]:
mean += _run_one_shift(shift)
mean /= len(all_shifts)
else:
# multithreaded via dask
futures = [dask.delayed(_run_one_shift)(s) for s in all_shifts]
mean = sum(futures) / len(futures)
mean = mean.compute(num_workers=num_workers)
return mean