Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/skimage/measure/tests/test_simple_metrics.py

85 lines
2.9 KiB
Python
Raw Permalink Normal View History

import numpy as np
import skimage.data
from skimage.measure import compare_nrmse, compare_psnr, compare_mse
from skimage._shared import testing
from skimage._shared.testing import assert_equal, assert_almost_equal
from skimage._shared._warnings import expected_warnings
np.random.seed(5)
cam = skimage.data.camera()
sigma = 20.0
cam_noisy = np.clip(cam + sigma * np.random.randn(*cam.shape), 0, 255)
cam_noisy = cam_noisy.astype(cam.dtype)
def test_PSNR_vs_IPOL():
# Tests vs. imdiff result from the following IPOL article and code:
# https://www.ipol.im/pub/art/2011/g_lmii/
p_IPOL = 22.4497
with expected_warnings(['DEPRECATED']):
p = compare_psnr(cam, cam_noisy)
assert_almost_equal(p, p_IPOL, decimal=4)
def test_PSNR_float():
with expected_warnings(['DEPRECATED']):
p_uint8 = compare_psnr(cam, cam_noisy)
p_float64 = compare_psnr(cam / 255., cam_noisy / 255.,
data_range=1)
assert_almost_equal(p_uint8, p_float64, decimal=5)
# mixed precision inputs
with expected_warnings(['DEPRECATED']):
p_mixed = compare_psnr(cam / 255., np.float32(cam_noisy / 255.),
data_range=1)
assert_almost_equal(p_mixed, p_float64, decimal=5)
# mismatched dtype results in a warning if data_range is unspecified
with expected_warnings(['Inputs have mismatched dtype', 'DEPRECATED']):
p_mixed = compare_psnr(cam / 255., np.float32(cam_noisy / 255.))
assert_almost_equal(p_mixed, p_float64, decimal=5)
def test_PSNR_errors():
with expected_warnings(['DEPRECATED']):
# shape mismatch
with testing.raises(ValueError):
compare_psnr(cam, cam[:-1, :])
def test_NRMSE():
x = np.ones(4)
y = np.asarray([0., 2., 2., 2.])
with expected_warnings(['DEPRECATED']):
assert_equal(compare_nrmse(y, x, 'mean'), 1 / np.mean(y))
assert_equal(compare_nrmse(y, x, 'Euclidean'), 1 / np.sqrt(3))
assert_equal(compare_nrmse(y, x, 'min-max'), 1 / (y.max() - y.min()))
# mixed precision inputs are allowed
assert_almost_equal(compare_nrmse(y, np.float32(x), 'min-max'),
1 / (y.max() - y.min()))
def test_NRMSE_no_int_overflow():
camf = cam.astype(np.float32)
cam_noisyf = cam_noisy.astype(np.float32)
with expected_warnings(['DEPRECATED']):
assert_almost_equal(compare_mse(cam, cam_noisy),
compare_mse(camf, cam_noisyf))
assert_almost_equal(compare_nrmse(cam, cam_noisy),
compare_nrmse(camf, cam_noisyf))
def test_NRMSE_errors():
x = np.ones(4)
with expected_warnings(['DEPRECATED']):
# shape mismatch
with testing.raises(ValueError):
compare_nrmse(x[:-1], x)
# invalid normalization name
with testing.raises(ValueError):
compare_nrmse(x, x, norm_type='foo')