Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/skimage/feature/tests/test_orb.py

132 lines
5.9 KiB
Python
Raw Permalink Normal View History

import pytest
import numpy as np
from skimage._shared.testing import assert_equal, assert_almost_equal
from skimage.feature import ORB
from skimage._shared import testing
from skimage import data
from skimage._shared.testing import test_parallel, xfail, arch32
from skimage.util.dtype import _convert
img = data.coins()
@test_parallel()
@pytest.mark.parametrize('dtype', ['float32', 'float64', 'uint8',
'uint16', 'int64'])
def test_keypoints_orb_desired_no_of_keypoints(dtype):
_img = _convert(img, dtype)
detector_extractor = ORB(n_keypoints=10, fast_n=12, fast_threshold=0.20)
detector_extractor.detect(_img)
exp_rows = np.array([141., 108., 214.56, 131., 214.272, 67.,
206., 177., 108., 141.])
exp_cols = np.array([323., 328., 282.24, 292., 281.664, 85.,
260., 284., 328.8, 267.])
exp_scales = np.array([1, 1, 1.44, 1, 1.728, 1, 1, 1, 1.2, 1])
exp_orientations = np.array([-53.97446153, 59.5055285, -96.01885186,
-149.70789506, -94.70171899, -45.76429535,
-51.49752849, 113.57081195, 63.30428063,
-79.56091118])
exp_response = np.array([1.01168357, 0.82934145, 0.67784179, 0.57176438,
0.56637459, 0.52248355, 0.43696175, 0.42992376,
0.37700486, 0.36126832])
assert_almost_equal(exp_rows, detector_extractor.keypoints[:, 0])
assert_almost_equal(exp_cols, detector_extractor.keypoints[:, 1])
assert_almost_equal(exp_scales, detector_extractor.scales)
assert_almost_equal(exp_response, detector_extractor.responses, 5)
assert_almost_equal(exp_orientations,
np.rad2deg(detector_extractor.orientations), 4)
detector_extractor.detect_and_extract(img)
assert_almost_equal(exp_rows, detector_extractor.keypoints[:, 0])
assert_almost_equal(exp_cols, detector_extractor.keypoints[:, 1])
@pytest.mark.parametrize('dtype', ['float32', 'float64', 'uint8',
'uint16', 'int64'])
def test_keypoints_orb_less_than_desired_no_of_keypoints(dtype):
_img = _convert(img, dtype)
detector_extractor = ORB(n_keypoints=15, fast_n=12,
fast_threshold=0.33, downscale=2, n_scales=2)
detector_extractor.detect(_img)
exp_rows = np.array([108., 203., 140., 65., 58.])
exp_cols = np.array([293., 267., 202., 130., 291.])
exp_scales = np.array([1., 1., 1., 1., 1.])
exp_orientations = np.array([151.93906, -56.90052, -79.46341,
-59.42996, -158.26941])
exp_response = np.array([-0.1764169, 0.2652126, -0.0324343,
0.0400902, 0.2667641])
assert_almost_equal(exp_rows, detector_extractor.keypoints[:, 0])
assert_almost_equal(exp_cols, detector_extractor.keypoints[:, 1])
assert_almost_equal(exp_scales, detector_extractor.scales)
assert_almost_equal(exp_response, detector_extractor.responses)
assert_almost_equal(exp_orientations,
np.rad2deg(detector_extractor.orientations), 3)
detector_extractor.detect_and_extract(img)
assert_almost_equal(exp_rows, detector_extractor.keypoints[:, 0])
assert_almost_equal(exp_cols, detector_extractor.keypoints[:, 1])
@xfail(condition=arch32,
reason=('Known test failure on 32-bit platforms. See links for '
'details: '
'https://github.com/scikit-image/scikit-image/issues/3091 '
'https://github.com/scikit-image/scikit-image/issues/2529'))
def test_descriptor_orb():
detector_extractor = ORB(fast_n=12, fast_threshold=0.20)
exp_descriptors = np.array([[0, 0, 0, 1, 0, 0, 0, 1, 0, 1],
[1, 1, 0, 1, 0, 0, 0, 1, 0, 1],
[1, 1, 0, 0, 1, 0, 0, 0, 1, 1],
[1, 1, 1, 0, 0, 0, 1, 1, 1, 0],
[0, 0, 0, 1, 0, 1, 1, 1, 1, 1],
[1, 0, 0, 1, 1, 0, 0, 0, 1, 0],
[0, 1, 1, 1, 1, 1, 1, 1, 1, 0],
[1, 1, 1, 0, 1, 1, 1, 1, 0, 0],
[1, 1, 1, 1, 0, 0, 0, 1, 1, 1],
[0, 1, 1, 0, 0, 1, 1, 0, 1, 1],
[1, 1, 0, 0, 0, 0, 0, 0, 1, 1],
[1, 0, 0, 0, 0, 1, 0, 1, 1, 1],
[1, 0, 1, 1, 1, 0, 1, 0, 1, 0],
[0, 0, 1, 1, 0, 0, 0, 0, 1, 1],
[0, 1, 1, 0, 0, 0, 1, 0, 0, 1],
[0, 1, 1, 0, 0, 0, 1, 1, 1, 1],
[0, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[0, 0, 1, 1, 1, 1, 0, 1, 1, 0],
[0, 0, 1, 1, 1, 0, 1, 0, 0, 1],
[0, 1, 0, 0, 0, 0, 0, 0, 1, 0]], dtype=bool)
detector_extractor.detect(img)
detector_extractor.extract(img, detector_extractor.keypoints,
detector_extractor.scales,
detector_extractor.orientations)
assert_equal(exp_descriptors,
detector_extractor.descriptors[100:120, 10:20])
detector_extractor.detect_and_extract(img)
assert_equal(exp_descriptors,
detector_extractor.descriptors[100:120, 10:20])
keypoints_count = detector_extractor.keypoints.shape[0]
assert keypoints_count == detector_extractor.descriptors.shape[0]
assert keypoints_count == detector_extractor.orientations.shape[0]
assert keypoints_count == detector_extractor.responses.shape[0]
assert keypoints_count == detector_extractor.scales.shape[0]
def test_no_descriptors_extracted_orb():
img = np.ones((128, 128))
detector_extractor = ORB()
with testing.raises(RuntimeError):
detector_extractor.detect_and_extract(img)