Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/skimage/feature/tests/test_daisy.py

103 lines
3.3 KiB
Python
Raw Permalink Normal View History

import numpy as np
from skimage._shared.testing import assert_almost_equal
from numpy import sqrt, ceil
from skimage import data
from skimage import img_as_float
from skimage.feature import daisy
from skimage._shared import testing
def test_daisy_color_image_unsupported_error():
img = np.zeros((20, 20, 3))
with testing.raises(ValueError):
daisy(img)
def test_daisy_desc_dims():
img = img_as_float(data.astronaut()[:128, :128].mean(axis=2))
rings = 2
histograms = 4
orientations = 3
descs = daisy(img, rings=rings, histograms=histograms,
orientations=orientations)
assert(descs.shape[2] == (rings * histograms + 1) * orientations)
rings = 4
histograms = 5
orientations = 13
descs = daisy(img, rings=rings, histograms=histograms,
orientations=orientations)
assert(descs.shape[2] == (rings * histograms + 1) * orientations)
def test_descs_shape():
img = img_as_float(data.astronaut()[:256, :256].mean(axis=2))
radius = 20
step = 8
descs = daisy(img, radius=radius, step=step)
assert(descs.shape[0] == ceil((img.shape[0] - radius * 2) / float(step)))
assert(descs.shape[1] == ceil((img.shape[1] - radius * 2) / float(step)))
img = img[:-1, :-2]
radius = 5
step = 3
descs = daisy(img, radius=radius, step=step)
assert(descs.shape[0] == ceil((img.shape[0] - radius * 2) / float(step)))
assert(descs.shape[1] == ceil((img.shape[1] - radius * 2) / float(step)))
def test_daisy_sigmas_and_radii():
img = img_as_float(data.astronaut()[:64, :64].mean(axis=2))
sigmas = [1, 2, 3]
radii = [1, 2]
daisy(img, sigmas=sigmas, ring_radii=radii)
def test_daisy_incompatible_sigmas_and_radii():
img = img_as_float(data.astronaut()[:64, :64].mean(axis=2))
sigmas = [1, 2]
radii = [1, 2]
with testing.raises(ValueError):
daisy(img, sigmas=sigmas, ring_radii=radii)
def test_daisy_normalization():
img = img_as_float(data.astronaut()[:64, :64].mean(axis=2))
descs = daisy(img, normalization='l1')
for i in range(descs.shape[0]):
for j in range(descs.shape[1]):
assert_almost_equal(np.sum(descs[i, j, :]), 1)
descs_ = daisy(img)
assert_almost_equal(descs, descs_)
descs = daisy(img, normalization='l2')
for i in range(descs.shape[0]):
for j in range(descs.shape[1]):
assert_almost_equal(sqrt(np.sum(descs[i, j, :] ** 2)), 1)
orientations = 8
descs = daisy(img, orientations=orientations, normalization='daisy')
desc_dims = descs.shape[2]
for i in range(descs.shape[0]):
for j in range(descs.shape[1]):
for k in range(0, desc_dims, orientations):
assert_almost_equal(sqrt(np.sum(
descs[i, j, k:k + orientations] ** 2)), 1)
img = np.zeros((50, 50))
descs = daisy(img, normalization='off')
for i in range(descs.shape[0]):
for j in range(descs.shape[1]):
assert_almost_equal(np.sum(descs[i, j, :]), 0)
with testing.raises(ValueError):
daisy(img, normalization='does_not_exist')
def test_daisy_visualization():
img = img_as_float(data.astronaut()[:32, :32].mean(axis=2))
descs, descs_img = daisy(img, visualize=True)
assert(descs_img.shape == (32, 32, 3))