Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/skimage/feature/tests/test_blob.py

446 lines
11 KiB
Python
Raw Permalink Normal View History

import numpy as np
from skimage.draw import disk
from skimage.draw.draw3d import ellipsoid
from skimage.feature import blob_dog, blob_log, blob_doh
from skimage.feature.blob import _blob_overlap
import math
from numpy.testing import assert_almost_equal
def test_blob_dog():
r2 = math.sqrt(2)
img = np.ones((512, 512))
xs, ys = disk((400, 130), 5)
img[xs, ys] = 255
xs, ys = disk((100, 300), 25)
img[xs, ys] = 255
xs, ys = disk((200, 350), 45)
img[xs, ys] = 255
blobs = blob_dog(img, min_sigma=5, max_sigma=50)
radius = lambda x: r2 * x[2]
s = sorted(blobs, key=radius)
thresh = 5
b = s[0]
assert abs(b[0] - 400) <= thresh
assert abs(b[1] - 130) <= thresh
assert abs(radius(b) - 5) <= thresh
b = s[1]
assert abs(b[0] - 100) <= thresh
assert abs(b[1] - 300) <= thresh
assert abs(radius(b) - 25) <= thresh
b = s[2]
assert abs(b[0] - 200) <= thresh
assert abs(b[1] - 350) <= thresh
assert abs(radius(b) - 45) <= thresh
# Testing no peaks
img_empty = np.zeros((100,100))
assert blob_dog(img_empty).size == 0
# Testing 3D
r = 10
pad = 10
im3 = ellipsoid(r, r, r)
im3 = np.pad(im3, pad, mode='constant')
blobs = blob_dog(im3, min_sigma=3, max_sigma=10,
sigma_ratio=1.2, threshold=0.1)
b = blobs[0]
assert b.shape == (4,)
assert b[0] == r + pad + 1
assert b[1] == r + pad + 1
assert b[2] == r + pad + 1
assert abs(math.sqrt(3) * b[3] - r) < 1
# Testing 3D anisotropic
r = 10
pad = 10
im3 = ellipsoid(r / 2, r, r)
im3 = np.pad(im3, pad, mode='constant')
blobs = blob_dog(
im3,
min_sigma=[1.5, 3, 3],
max_sigma=[5, 10, 10],
sigma_ratio=1.2,
threshold=0.1
)
b = blobs[0]
assert b.shape == (6,)
assert b[0] == r / 2 + pad + 1
assert b[1] == r + pad + 1
assert b[2] == r + pad + 1
assert abs(math.sqrt(3) * b[3] - r / 2) < 1
assert abs(math.sqrt(3) * b[4] - r) < 1
assert abs(math.sqrt(3) * b[5] - r) < 1
# Testing exclude border
# image where blob is 5 px from borders, radius 5
img = np.ones((512, 512))
xs, ys = disk((5, 5), 5)
img[xs, ys] = 255
def test_blob_dog_excl_border():
img = np.ones((512, 512))
xs, ys = disk((5, 5), 5)
img[xs, ys] = 255
blobs = blob_dog(
img,
min_sigma=1.5,
max_sigma=5,
sigma_ratio=1.2,
)
assert blobs.shape[0] == 1
b = blobs[0]
assert b[0] == b[1] == 5, "blob should be 5 px from x and y borders"
blobs = blob_dog(
img,
min_sigma=1.5,
max_sigma=5,
sigma_ratio=1.2,
exclude_border=6,
)
msg = "zero blobs should be detected, as only blob is 5 px from border"
assert blobs.shape[0] == 0, msg
def test_blob_log():
r2 = math.sqrt(2)
img = np.ones((256, 256))
xs, ys = disk((200, 65), 5)
img[xs, ys] = 255
xs, ys = disk((80, 25), 15)
img[xs, ys] = 255
xs, ys = disk((50, 150), 25)
img[xs, ys] = 255
xs, ys = disk((100, 175), 30)
img[xs, ys] = 255
blobs = blob_log(img, min_sigma=5, max_sigma=20, threshold=1)
radius = lambda x: r2 * x[2]
s = sorted(blobs, key=radius)
thresh = 3
b = s[0]
assert abs(b[0] - 200) <= thresh
assert abs(b[1] - 65) <= thresh
assert abs(radius(b) - 5) <= thresh
b = s[1]
assert abs(b[0] - 80) <= thresh
assert abs(b[1] - 25) <= thresh
assert abs(radius(b) - 15) <= thresh
b = s[2]
assert abs(b[0] - 50) <= thresh
assert abs(b[1] - 150) <= thresh
assert abs(radius(b) - 25) <= thresh
b = s[3]
assert abs(b[0] - 100) <= thresh
assert abs(b[1] - 175) <= thresh
assert abs(radius(b) - 30) <= thresh
# Testing log scale
blobs = blob_log(
img,
min_sigma=5,
max_sigma=20,
threshold=1,
log_scale=True)
b = s[0]
assert abs(b[0] - 200) <= thresh
assert abs(b[1] - 65) <= thresh
assert abs(radius(b) - 5) <= thresh
b = s[1]
assert abs(b[0] - 80) <= thresh
assert abs(b[1] - 25) <= thresh
assert abs(radius(b) - 15) <= thresh
b = s[2]
assert abs(b[0] - 50) <= thresh
assert abs(b[1] - 150) <= thresh
assert abs(radius(b) - 25) <= thresh
b = s[3]
assert abs(b[0] - 100) <= thresh
assert abs(b[1] - 175) <= thresh
assert abs(radius(b) - 30) <= thresh
# Testing no peaks
img_empty = np.zeros((100,100))
assert blob_log(img_empty).size == 0
def test_blob_log_3d():
# Testing 3D
r = 6
pad = 10
im3 = ellipsoid(r, r, r)
im3 = np.pad(im3, pad, mode='constant')
blobs = blob_log(im3, min_sigma=3, max_sigma=10)
b = blobs[0]
assert b.shape == (4,)
assert b[0] == r + pad + 1
assert b[1] == r + pad + 1
assert b[2] == r + pad + 1
assert abs(math.sqrt(3) * b[3] - r) < 1
def test_blob_log_3d_anisotropic():
# Testing 3D anisotropic
r = 6
pad = 10
im3 = ellipsoid(r / 2, r, r)
im3 = np.pad(im3, pad, mode='constant')
blobs = blob_log(
im3,
min_sigma=[1, 2, 2],
max_sigma=[5, 10, 10],
)
b = blobs[0]
assert b.shape == (6,)
assert b[0] == r / 2 + pad + 1
assert b[1] == r + pad + 1
assert b[2] == r + pad + 1
assert abs(math.sqrt(3) * b[3] - r / 2) < 1
assert abs(math.sqrt(3) * b[4] - r) < 1
assert abs(math.sqrt(3) * b[5] - r) < 1
def test_blob_log_exclude_border():
# image where blob is 5 px from borders, radius 5
img = np.ones((512, 512))
xs, ys = disk((5, 5), 5)
img[xs, ys] = 255
blobs = blob_log(
img,
min_sigma=1.5,
max_sigma=5,
)
assert blobs.shape[0] == 1
b = blobs[0]
assert b[0] == b[1] == 5, "blob should be 5 px from x and y borders"
blobs = blob_log(
img,
min_sigma=1.5,
max_sigma=5,
exclude_border=6,
)
msg = "zero blobs should be detected, as only blob is 5 px from border"
assert blobs.shape[0] == 0, msg
def test_blob_doh():
img = np.ones((512, 512), dtype=np.uint8)
xs, ys = disk((400, 130), 20)
img[xs, ys] = 255
xs, ys = disk((460, 50), 30)
img[xs, ys] = 255
xs, ys = disk((100, 300), 40)
img[xs, ys] = 255
xs, ys = disk((200, 350), 50)
img[xs, ys] = 255
blobs = blob_doh(
img,
min_sigma=1,
max_sigma=60,
num_sigma=10,
threshold=.05)
radius = lambda x: x[2]
s = sorted(blobs, key=radius)
thresh = 4
b = s[0]
assert abs(b[0] - 400) <= thresh
assert abs(b[1] - 130) <= thresh
assert abs(radius(b) - 20) <= thresh
b = s[1]
assert abs(b[0] - 460) <= thresh
assert abs(b[1] - 50) <= thresh
assert abs(radius(b) - 30) <= thresh
b = s[2]
assert abs(b[0] - 100) <= thresh
assert abs(b[1] - 300) <= thresh
assert abs(radius(b) - 40) <= thresh
b = s[3]
assert abs(b[0] - 200) <= thresh
assert abs(b[1] - 350) <= thresh
assert abs(radius(b) - 50) <= thresh
def test_blob_doh_log_scale():
img = np.ones((512, 512), dtype=np.uint8)
xs, ys = disk((400, 130), 20)
img[xs, ys] = 255
xs, ys = disk((460, 50), 30)
img[xs, ys] = 255
xs, ys = disk((100, 300), 40)
img[xs, ys] = 255
xs, ys = disk((200, 350), 50)
img[xs, ys] = 255
blobs = blob_doh(
img,
min_sigma=1,
max_sigma=60,
num_sigma=10,
log_scale=True,
threshold=.05)
radius = lambda x: x[2]
s = sorted(blobs, key=radius)
thresh = 10
b = s[0]
assert abs(b[0] - 400) <= thresh
assert abs(b[1] - 130) <= thresh
assert abs(radius(b) - 20) <= thresh
b = s[2]
assert abs(b[0] - 460) <= thresh
assert abs(b[1] - 50) <= thresh
assert abs(radius(b) - 30) <= thresh
b = s[1]
assert abs(b[0] - 100) <= thresh
assert abs(b[1] - 300) <= thresh
assert abs(radius(b) - 40) <= thresh
b = s[3]
assert abs(b[0] - 200) <= thresh
assert abs(b[1] - 350) <= thresh
assert abs(radius(b) - 50) <= thresh
def test_blob_doh_no_peaks():
# Testing no peaks
img_empty = np.zeros((100,100))
assert blob_doh(img_empty).size == 0
def test_blob_doh_overlap():
img = np.ones((256, 256), dtype=np.uint8)
xs, ys = disk((100, 100), 20)
img[xs, ys] = 255
xs, ys = disk((120, 100), 30)
img[xs, ys] = 255
blobs = blob_doh(
img,
min_sigma=1,
max_sigma=60,
num_sigma=10,
threshold=.05
)
assert len(blobs) == 1
def test_blob_log_overlap_3d():
r1, r2 = 7, 6
pad1, pad2 = 11, 12
blob1 = ellipsoid(r1, r1, r1)
blob1 = np.pad(blob1, pad1, mode='constant')
blob2 = ellipsoid(r2, r2, r2)
blob2 = np.pad(blob2, [(pad2, pad2), (pad2 - 9, pad2 + 9),
(pad2, pad2)],
mode='constant')
im3 = np.logical_or(blob1, blob2)
blobs = blob_log(im3, min_sigma=2, max_sigma=10, overlap=0.1)
assert len(blobs) == 1
def test_blob_overlap_3d_anisotropic():
# Two spheres with distance between centers equal to radius
# One sphere is much smaller than the other so about half of it is within
# the bigger sphere.
s3 = math.sqrt(3)
overlap = _blob_overlap(np.array([0, 0, 0, 2 / s3, 10 / s3, 10 / s3]),
np.array([0, 0, 10, 0.2 / s3, 1 / s3, 1 / s3]),
sigma_dim=3)
assert_almost_equal(overlap, 0.48125)
overlap = _blob_overlap(np.array([0, 0, 0, 2 / s3, 10 / s3, 10 / s3]),
np.array([2, 0, 0, 0.2 / s3, 1 / s3, 1 / s3]),
sigma_dim=3)
assert_almost_equal(overlap, 0.48125)
def test_blob_log_anisotropic():
image = np.zeros((50, 50))
image[20, 10:20] = 1
isotropic_blobs = blob_log(image, min_sigma=0.5, max_sigma=2, num_sigma=3)
assert len(isotropic_blobs) > 1 # many small blobs found in line
ani_blobs = blob_log(image, min_sigma=[0.5, 5], max_sigma=[2, 20],
num_sigma=3) # 10x anisotropy, line is 1x10
assert len(ani_blobs) == 1 # single anisotropic blob found
def test_blob_log_overlap_3d_anisotropic():
r1, r2 = 7, 6
pad1, pad2 = 11, 12
blob1 = ellipsoid(r1, r1, r1)
blob1 = np.pad(blob1, pad1, mode='constant')
blob2 = ellipsoid(r2, r2, r2)
blob2 = np.pad(blob2, [(pad2, pad2), (pad2 - 9, pad2 + 9),
(pad2, pad2)],
mode='constant')
im3 = np.logical_or(blob1, blob2)
blobs = blob_log(im3, min_sigma=[2, 2.01, 2.005],
max_sigma=10, overlap=0.1)
assert len(blobs) == 1
# Two circles with distance between centers equal to radius
overlap = _blob_overlap(np.array([0, 0, 10 / math.sqrt(2)]),
np.array([0, 10, 10 / math.sqrt(2)]))
assert_almost_equal(overlap,
1./math.pi * (2 * math.acos(1./2) - math.sqrt(3)/2.))
def test_no_blob():
im = np.zeros((10, 10))
blobs = blob_log(im, min_sigma=2, max_sigma=5, num_sigma=4)
assert len(blobs) == 0