Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/skimage/feature/template.py

180 lines
6.4 KiB
Python
Raw Permalink Normal View History

import numpy as np
from scipy.signal import fftconvolve
from .._shared.utils import check_nD
def _window_sum_2d(image, window_shape):
window_sum = np.cumsum(image, axis=0)
window_sum = (window_sum[window_shape[0]:-1]
- window_sum[:-window_shape[0] - 1])
window_sum = np.cumsum(window_sum, axis=1)
window_sum = (window_sum[:, window_shape[1]:-1]
- window_sum[:, :-window_shape[1] - 1])
return window_sum
def _window_sum_3d(image, window_shape):
window_sum = _window_sum_2d(image, window_shape)
window_sum = np.cumsum(window_sum, axis=2)
window_sum = (window_sum[:, :, window_shape[2]:-1]
- window_sum[:, :, :-window_shape[2] - 1])
return window_sum
def match_template(image, template, pad_input=False, mode='constant',
constant_values=0):
"""Match a template to a 2-D or 3-D image using normalized correlation.
The output is an array with values between -1.0 and 1.0. The value at a
given position corresponds to the correlation coefficient between the image
and the template.
For `pad_input=True` matches correspond to the center and otherwise to the
top-left corner of the template. To find the best match you must search for
peaks in the response (output) image.
Parameters
----------
image : (M, N[, D]) array
2-D or 3-D input image.
template : (m, n[, d]) array
Template to locate. It must be `(m <= M, n <= N[, d <= D])`.
pad_input : bool
If True, pad `image` so that output is the same size as the image, and
output values correspond to the template center. Otherwise, the output
is an array with shape `(M - m + 1, N - n + 1)` for an `(M, N)` image
and an `(m, n)` template, and matches correspond to origin
(top-left corner) of the template.
mode : see `numpy.pad`, optional
Padding mode.
constant_values : see `numpy.pad`, optional
Constant values used in conjunction with ``mode='constant'``.
Returns
-------
output : array
Response image with correlation coefficients.
Notes
-----
Details on the cross-correlation are presented in [1]_. This implementation
uses FFT convolutions of the image and the template. Reference [2]_
presents similar derivations but the approximation presented in this
reference is not used in our implementation.
References
----------
.. [1] J. P. Lewis, "Fast Normalized Cross-Correlation", Industrial Light
and Magic.
.. [2] Briechle and Hanebeck, "Template Matching using Fast Normalized
Cross Correlation", Proceedings of the SPIE (2001).
:DOI:`10.1117/12.421129`
Examples
--------
>>> template = np.zeros((3, 3))
>>> template[1, 1] = 1
>>> template
array([[0., 0., 0.],
[0., 1., 0.],
[0., 0., 0.]])
>>> image = np.zeros((6, 6))
>>> image[1, 1] = 1
>>> image[4, 4] = -1
>>> image
array([[ 0., 0., 0., 0., 0., 0.],
[ 0., 1., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., -1., 0.],
[ 0., 0., 0., 0., 0., 0.]])
>>> result = match_template(image, template)
>>> np.round(result, 3)
array([[ 1. , -0.125, 0. , 0. ],
[-0.125, -0.125, 0. , 0. ],
[ 0. , 0. , 0.125, 0.125],
[ 0. , 0. , 0.125, -1. ]])
>>> result = match_template(image, template, pad_input=True)
>>> np.round(result, 3)
array([[-0.125, -0.125, -0.125, 0. , 0. , 0. ],
[-0.125, 1. , -0.125, 0. , 0. , 0. ],
[-0.125, -0.125, -0.125, 0. , 0. , 0. ],
[ 0. , 0. , 0. , 0.125, 0.125, 0.125],
[ 0. , 0. , 0. , 0.125, -1. , 0.125],
[ 0. , 0. , 0. , 0.125, 0.125, 0.125]])
"""
check_nD(image, (2, 3))
if image.ndim < template.ndim:
raise ValueError("Dimensionality of template must be less than or "
"equal to the dimensionality of image.")
if np.any(np.less(image.shape, template.shape)):
raise ValueError("Image must be larger than template.")
image_shape = image.shape
image = np.array(image, dtype=np.float64, copy=False)
pad_width = tuple((width, width) for width in template.shape)
if mode == 'constant':
image = np.pad(image, pad_width=pad_width, mode=mode,
constant_values=constant_values)
else:
image = np.pad(image, pad_width=pad_width, mode=mode)
# Use special case for 2-D images for much better performance in
# computation of integral images
if image.ndim == 2:
image_window_sum = _window_sum_2d(image, template.shape)
image_window_sum2 = _window_sum_2d(image ** 2, template.shape)
elif image.ndim == 3:
image_window_sum = _window_sum_3d(image, template.shape)
image_window_sum2 = _window_sum_3d(image ** 2, template.shape)
template_mean = template.mean()
template_volume = np.prod(template.shape)
template_ssd = np.sum((template - template_mean) ** 2)
if image.ndim == 2:
xcorr = fftconvolve(image, template[::-1, ::-1],
mode="valid")[1:-1, 1:-1]
elif image.ndim == 3:
xcorr = fftconvolve(image, template[::-1, ::-1, ::-1],
mode="valid")[1:-1, 1:-1, 1:-1]
numerator = xcorr - image_window_sum * template_mean
denominator = image_window_sum2
np.multiply(image_window_sum, image_window_sum, out=image_window_sum)
np.divide(image_window_sum, template_volume, out=image_window_sum)
denominator -= image_window_sum
denominator *= template_ssd
np.maximum(denominator, 0, out=denominator) # sqrt of negative number not allowed
np.sqrt(denominator, out=denominator)
response = np.zeros_like(xcorr, dtype=np.float64)
# avoid zero-division
mask = denominator > np.finfo(np.float64).eps
response[mask] = numerator[mask] / denominator[mask]
slices = []
for i in range(template.ndim):
if pad_input:
d0 = (template.shape[i] - 1) // 2
d1 = d0 + image_shape[i]
else:
d0 = template.shape[i] - 1
d1 = d0 + image_shape[i] - template.shape[i] + 1
slices.append(slice(d0, d1))
return response[tuple(slices)]